REDef-DETR: Real-time and Efficient DETR for industrial surface defect detection

计算机科学 环境科学
作者
Dejian Li,Changhong Jiang,Tielin Liang
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6501/ad60ea
摘要

Abstract Industrial surface defect detection is an important part of industrial production, which aims to identify and detecting various defects on the surface of product to ensure quality and meet customer requirements. With the development of deep learning and image processing technologies, the surface defect detection methods based on computer vision has become the mainstream method. However, the prevalent convolutional neural network(CNN)-based de-fect detection methods also have many problems. For example, these methods rely on post-processing of Non-Maximum Suppression (NMS) and have poor detection ability for small targets, which affects the speed and accuracy of surface defect detection in industrial scenar-ios. Therefore, we propose a novel DEtection TRansformer (DETR)-based surface defect detection method. Firstly, we propose a Multi-scale Contextual Information Dilated module and fuse it into the backbone. The module is mainly composed of large kernel convolutions, which aims to expand the receptive field of the model, thus reducing the leakage rate of the model. Moreover, we design an efficient encoder which mainly contains two important mod-ules, namely feature enhancement based on cascaded group attention module and efficient feature fusion module based on content-aware. The former module effectively enhances the high-level semantic information extracted by the backbone, thus enabling the model to better interpret features, and it can improve the problem of high computational cost of transformer encoder, thus increasing the detection speed. The latter module performs multi-scale feature fusion across the feature information of various scales, thus improving the detection accura-cy of the model for small-size defects. Experimental results show that the proposed method achieves 80.6%mAP and 80.3FPS on NEU-DET, and 98.0%mAP and 79.4FPS on PCB-DET. Our proposed method exhibits excellent detection performance and achieves real-time and efficient surface defect detection capability to meet the needs of industrial surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助111采纳,获得10
刚刚
高大凌寒应助xiaofei666采纳,获得200
刚刚
1秒前
SciGPT应助学术草履虫采纳,获得10
1秒前
2秒前
mr_beard发布了新的文献求助10
2秒前
唯馨馨发布了新的文献求助10
3秒前
玛卡巴卡发布了新的文献求助10
3秒前
bkagyin应助祎祎采纳,获得10
3秒前
充电宝应助缓慢的灵枫采纳,获得10
3秒前
5秒前
6秒前
ailfi发布了新的文献求助30
7秒前
CodeCraft应助滑板采纳,获得10
8秒前
9秒前
9秒前
10秒前
Lucas应助Wang采纳,获得10
10秒前
文艺人生发布了新的文献求助10
10秒前
10秒前
12秒前
aha发布了新的文献求助10
12秒前
13秒前
Akihi发布了新的文献求助10
14秒前
凌香芦发布了新的文献求助10
14秒前
14秒前
15秒前
自信秋烟发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
刘华强发布了新的文献求助10
17秒前
Akim应助顺心绮兰采纳,获得10
18秒前
感谢樱桃小苹果转发科研通微信,获得积分50
21秒前
22秒前
清流发布了新的文献求助30
22秒前
22秒前
数学情缘发布了新的文献求助10
22秒前
23秒前
打打应助凌香芦采纳,获得10
23秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170026
求助须知:如何正确求助?哪些是违规求助? 2821229
关于积分的说明 7933284
捐赠科研通 2481540
什么是DOI,文献DOI怎么找? 1321856
科研通“疑难数据库(出版商)”最低求助积分说明 633422
版权声明 602562