清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

REDef-DETR: real-time and efficient DETR for industrial surface defect detection

计算机科学 环境科学
作者
Dejian Li,Changhong Jiang,Tielin Liang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105411-105411 被引量:11
标识
DOI:10.1088/1361-6501/ad60ea
摘要

Abstract Industrial surface defect detection is an important part of industrial production, which aims to identify and detecting various defects on the surface of product to ensure quality and meet customer requirements. With the development of deep learning and image processing technologies, the surface defect detection methods based on computer vision has become the mainstream method. However, the prevalent convolutional neural network-based defect detection methods also have many problems. For example, these methods rely on post-processing of Non-Maximum Suppression and have poor detection ability for small targets, which affects the speed and accuracy of surface defect detection in industrial scenarios. Therefore, we propose a novel DEtection TRansformer-based surface defect detection method. Firstly, we propose a Multi-scale Contextual Information Dilated module and fuse it into the backbone. The module is mainly composed of large kernel convolutions, which aims to expand the receptive field of the model, thus reducing the leakage rate of the model. Moreover, we design an efficient encoder which mainly contains two important modules, namely feature enhancement based on cascaded group attention module and efficient feature fusion module based on content-aware. The former module effectively enhances the high-level semantic information extracted by the backbone, thus enabling the model to better interpret features, and it can improve the problem of high computational cost of transformer encoder, thus increasing the detection speed. The latter module performs multi-scale feature fusion across the feature information of various scales, thus improving the detection accuracy of the model for small-size defects. Experimental results show that the proposed method achieves 80.6%mAP and 80.3FPS on NEU-DET, and 98.0%mAP and 79.4FPS on PCB-DET. Our proposed method exhibits excellent detection performance and achieves real-time and efficient surface defect detection capability to meet the needs of industrial surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susu_完成签到,获得积分10
2秒前
senpl发布了新的文献求助10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
菜鸟学习完成签到 ,获得积分10
37秒前
41秒前
1分钟前
miracle完成签到,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
Jim发布了新的文献求助10
2分钟前
BowieHuang应助miracle采纳,获得10
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
xwy关注了科研通微信公众号
2分钟前
3分钟前
mickaqi完成签到 ,获得积分10
3分钟前
tt完成签到,获得积分10
3分钟前
xwy发布了新的文献求助10
3分钟前
神秘猎牛人应助乐观之瑶采纳,获得10
3分钟前
冉亦完成签到,获得积分10
3分钟前
星际舟完成签到,获得积分10
3分钟前
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
十七岁男高中生完成签到 ,获得积分10
4分钟前
Hazel完成签到,获得积分20
4分钟前
4分钟前
Hazel发布了新的文献求助10
4分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
zly完成签到 ,获得积分10
6分钟前
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
隐形曼青应助科研通管家采纳,获得10
6分钟前
神秘猎牛人应助daizao采纳,获得10
6分钟前
鲑鱼完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538845
求助须知:如何正确求助?哪些是违规求助? 4625835
关于积分的说明 14596950
捐赠科研通 4566541
什么是DOI,文献DOI怎么找? 2503357
邀请新用户注册赠送积分活动 1481421
关于科研通互助平台的介绍 1452856