亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

REDef-DETR: real-time and efficient DETR for industrial surface defect detection

计算机科学 环境科学
作者
Dejian Li,Changhong Jiang,Tielin Liang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105411-105411 被引量:11
标识
DOI:10.1088/1361-6501/ad60ea
摘要

Abstract Industrial surface defect detection is an important part of industrial production, which aims to identify and detecting various defects on the surface of product to ensure quality and meet customer requirements. With the development of deep learning and image processing technologies, the surface defect detection methods based on computer vision has become the mainstream method. However, the prevalent convolutional neural network-based defect detection methods also have many problems. For example, these methods rely on post-processing of Non-Maximum Suppression and have poor detection ability for small targets, which affects the speed and accuracy of surface defect detection in industrial scenarios. Therefore, we propose a novel DEtection TRansformer-based surface defect detection method. Firstly, we propose a Multi-scale Contextual Information Dilated module and fuse it into the backbone. The module is mainly composed of large kernel convolutions, which aims to expand the receptive field of the model, thus reducing the leakage rate of the model. Moreover, we design an efficient encoder which mainly contains two important modules, namely feature enhancement based on cascaded group attention module and efficient feature fusion module based on content-aware. The former module effectively enhances the high-level semantic information extracted by the backbone, thus enabling the model to better interpret features, and it can improve the problem of high computational cost of transformer encoder, thus increasing the detection speed. The latter module performs multi-scale feature fusion across the feature information of various scales, thus improving the detection accuracy of the model for small-size defects. Experimental results show that the proposed method achieves 80.6%mAP and 80.3FPS on NEU-DET, and 98.0%mAP and 79.4FPS on PCB-DET. Our proposed method exhibits excellent detection performance and achieves real-time and efficient surface defect detection capability to meet the needs of industrial surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
40秒前
铁瓜李完成签到 ,获得积分10
43秒前
46秒前
zoelir发布了新的文献求助10
51秒前
zoelir完成签到,获得积分10
1分钟前
lingting完成签到,获得积分10
1分钟前
英姑应助zhjl采纳,获得10
1分钟前
1分钟前
lingting发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
2分钟前
矜持完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Pattis完成签到 ,获得积分10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
国色不染尘完成签到,获得积分10
2分钟前
2分钟前
结实的半双完成签到,获得积分10
3分钟前
3分钟前
芙瑞完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Azlne完成签到,获得积分10
4分钟前
4分钟前
zhjl发布了新的文献求助10
4分钟前
4分钟前
滕皓轩完成签到 ,获得积分20
4分钟前
6分钟前
清脆语海发布了新的文献求助10
6分钟前
李爱国应助清脆语海采纳,获得10
6分钟前
6分钟前
6分钟前
MiaMia应助科研通管家采纳,获得30
6分钟前
科研通AI6应助科研通管家采纳,获得30
6分钟前
6分钟前
香蕉觅云应助zl采纳,获得10
6分钟前
zym完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639739
求助须知:如何正确求助?哪些是违规求助? 4750173
关于积分的说明 15007280
捐赠科研通 4797915
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522896
关于科研通互助平台的介绍 1482574