REDef-DETR: real-time and efficient DETR for industrial surface defect detection

计算机科学 环境科学
作者
Dejian Li,Changhong Jiang,Tielin Liang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105411-105411 被引量:3
标识
DOI:10.1088/1361-6501/ad60ea
摘要

Abstract Industrial surface defect detection is an important part of industrial production, which aims to identify and detecting various defects on the surface of product to ensure quality and meet customer requirements. With the development of deep learning and image processing technologies, the surface defect detection methods based on computer vision has become the mainstream method. However, the prevalent convolutional neural network-based defect detection methods also have many problems. For example, these methods rely on post-processing of Non-Maximum Suppression and have poor detection ability for small targets, which affects the speed and accuracy of surface defect detection in industrial scenarios. Therefore, we propose a novel DEtection TRansformer-based surface defect detection method. Firstly, we propose a Multi-scale Contextual Information Dilated module and fuse it into the backbone. The module is mainly composed of large kernel convolutions, which aims to expand the receptive field of the model, thus reducing the leakage rate of the model. Moreover, we design an efficient encoder which mainly contains two important modules, namely feature enhancement based on cascaded group attention module and efficient feature fusion module based on content-aware. The former module effectively enhances the high-level semantic information extracted by the backbone, thus enabling the model to better interpret features, and it can improve the problem of high computational cost of transformer encoder, thus increasing the detection speed. The latter module performs multi-scale feature fusion across the feature information of various scales, thus improving the detection accuracy of the model for small-size defects. Experimental results show that the proposed method achieves 80.6%mAP and 80.3FPS on NEU-DET, and 98.0%mAP and 79.4FPS on PCB-DET. Our proposed method exhibits excellent detection performance and achieves real-time and efficient surface defect detection capability to meet the needs of industrial surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
想退休了发布了新的文献求助10
3秒前
3秒前
今后应助一坨采纳,获得30
5秒前
彬琪完成签到,获得积分10
5秒前
zhangyu应助梦Weimar采纳,获得10
5秒前
微7发布了新的文献求助10
5秒前
wish完成签到 ,获得积分10
6秒前
鸣笛应助聪明的元彤采纳,获得200
6秒前
7秒前
在水一方应助CY采纳,获得10
7秒前
Ava应助小奶瓶_采纳,获得10
10秒前
weihe完成签到,获得积分10
10秒前
nicheng完成签到 ,获得积分0
11秒前
11秒前
木心应助coo采纳,获得20
12秒前
huluobo发布了新的文献求助10
12秒前
12秒前
13秒前
Visitor_001完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
17秒前
鸣笛应助cc采纳,获得30
18秒前
18秒前
19秒前
19秒前
美满的乐瑶完成签到 ,获得积分10
19秒前
19秒前
CY发布了新的文献求助10
19秒前
帅帅完成签到,获得积分10
20秒前
乐乐应助李明涵采纳,获得30
20秒前
NexusExplorer应助独特元蝶采纳,获得10
20秒前
kk发布了新的文献求助10
21秒前
21秒前
如意果汁发布了新的文献求助10
22秒前
隐形曼青应助Havibi采纳,获得10
23秒前
23秒前
夏天发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629