REDef-DETR: real-time and efficient DETR for industrial surface defect detection

计算机科学 环境科学
作者
Dejian Li,Changhong Jiang,Tielin Liang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105411-105411 被引量:11
标识
DOI:10.1088/1361-6501/ad60ea
摘要

Abstract Industrial surface defect detection is an important part of industrial production, which aims to identify and detecting various defects on the surface of product to ensure quality and meet customer requirements. With the development of deep learning and image processing technologies, the surface defect detection methods based on computer vision has become the mainstream method. However, the prevalent convolutional neural network-based defect detection methods also have many problems. For example, these methods rely on post-processing of Non-Maximum Suppression and have poor detection ability for small targets, which affects the speed and accuracy of surface defect detection in industrial scenarios. Therefore, we propose a novel DEtection TRansformer-based surface defect detection method. Firstly, we propose a Multi-scale Contextual Information Dilated module and fuse it into the backbone. The module is mainly composed of large kernel convolutions, which aims to expand the receptive field of the model, thus reducing the leakage rate of the model. Moreover, we design an efficient encoder which mainly contains two important modules, namely feature enhancement based on cascaded group attention module and efficient feature fusion module based on content-aware. The former module effectively enhances the high-level semantic information extracted by the backbone, thus enabling the model to better interpret features, and it can improve the problem of high computational cost of transformer encoder, thus increasing the detection speed. The latter module performs multi-scale feature fusion across the feature information of various scales, thus improving the detection accuracy of the model for small-size defects. Experimental results show that the proposed method achieves 80.6%mAP and 80.3FPS on NEU-DET, and 98.0%mAP and 79.4FPS on PCB-DET. Our proposed method exhibits excellent detection performance and achieves real-time and efficient surface defect detection capability to meet the needs of industrial surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FFSGF完成签到,获得积分20
刚刚
Akim应助噗咔咔ya采纳,获得10
刚刚
刚刚
刚刚
大蒜味酸奶钊完成签到 ,获得积分10
1秒前
statsli完成签到,获得积分10
1秒前
小蘑菇应助冷酷严青采纳,获得10
1秒前
学术牛马发布了新的文献求助10
2秒前
充电宝应助野猪佩奇采纳,获得30
2秒前
勤奋的冰淇淋完成签到,获得积分10
2秒前
三水发布了新的文献求助10
2秒前
畅快远山发布了新的文献求助10
3秒前
美妮完成签到,获得积分20
3秒前
TTXS发布了新的文献求助10
3秒前
刘放发布了新的文献求助10
3秒前
kanoz完成签到,获得积分10
3秒前
3秒前
凡凡完成签到,获得积分20
3秒前
晓晓马儿完成签到 ,获得积分10
3秒前
万能图书馆应助shy采纳,获得10
3秒前
yitian完成签到,获得积分10
4秒前
专注笑珊完成签到,获得积分10
4秒前
甜美的沅完成签到 ,获得积分10
4秒前
自信的书南完成签到,获得积分10
4秒前
4秒前
5秒前
余喆发布了新的文献求助30
5秒前
wen完成签到,获得积分10
6秒前
任jie完成签到,获得积分10
6秒前
一水合羟基磷酸钙完成签到,获得积分10
6秒前
6秒前
FFSGF发布了新的文献求助10
6秒前
KID完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
凡凡发布了新的文献求助10
8秒前
myczh完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472829
求助须知:如何正确求助?哪些是违规求助? 4575043
关于积分的说明 14350202
捐赠科研通 4502414
什么是DOI,文献DOI怎么找? 2467157
邀请新用户注册赠送积分活动 1455101
关于科研通互助平台的介绍 1429246