已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

REDef-DETR: real-time and efficient DETR for industrial surface defect detection

计算机科学 环境科学
作者
Dejian Li,Changhong Jiang,Tielin Liang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105411-105411 被引量:11
标识
DOI:10.1088/1361-6501/ad60ea
摘要

Abstract Industrial surface defect detection is an important part of industrial production, which aims to identify and detecting various defects on the surface of product to ensure quality and meet customer requirements. With the development of deep learning and image processing technologies, the surface defect detection methods based on computer vision has become the mainstream method. However, the prevalent convolutional neural network-based defect detection methods also have many problems. For example, these methods rely on post-processing of Non-Maximum Suppression and have poor detection ability for small targets, which affects the speed and accuracy of surface defect detection in industrial scenarios. Therefore, we propose a novel DEtection TRansformer-based surface defect detection method. Firstly, we propose a Multi-scale Contextual Information Dilated module and fuse it into the backbone. The module is mainly composed of large kernel convolutions, which aims to expand the receptive field of the model, thus reducing the leakage rate of the model. Moreover, we design an efficient encoder which mainly contains two important modules, namely feature enhancement based on cascaded group attention module and efficient feature fusion module based on content-aware. The former module effectively enhances the high-level semantic information extracted by the backbone, thus enabling the model to better interpret features, and it can improve the problem of high computational cost of transformer encoder, thus increasing the detection speed. The latter module performs multi-scale feature fusion across the feature information of various scales, thus improving the detection accuracy of the model for small-size defects. Experimental results show that the proposed method achieves 80.6%mAP and 80.3FPS on NEU-DET, and 98.0%mAP and 79.4FPS on PCB-DET. Our proposed method exhibits excellent detection performance and achieves real-time and efficient surface defect detection capability to meet the needs of industrial surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
l900完成签到,获得积分20
1秒前
dengdeng发布了新的文献求助10
3秒前
吴荣方发布了新的文献求助10
5秒前
壮观大炮完成签到,获得积分10
5秒前
小蘑菇应助热情的未来采纳,获得10
6秒前
Jasper应助轻松的小曾采纳,获得10
7秒前
酷波er应助内向的绿海采纳,获得10
10秒前
充电宝应助内向的绿海采纳,获得10
10秒前
鈮宝完成签到 ,获得积分10
10秒前
WerWu完成签到,获得积分0
13秒前
13秒前
14秒前
医疗废物专用车乘客完成签到,获得积分10
16秒前
小曾发布了新的文献求助10
17秒前
wwt发布了新的文献求助10
19秒前
FashionBoy应助内向的绿海采纳,获得10
22秒前
22秒前
三泥完成签到,获得积分10
22秒前
Fn完成签到 ,获得积分10
24秒前
Momomo应助科研通管家采纳,获得10
25秒前
脑洞疼应助科研通管家采纳,获得30
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
Momomo应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
Momomo应助科研通管家采纳,获得10
26秒前
Momomo应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
Orange应助科研通管家采纳,获得10
26秒前
丘比特应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得30
26秒前
26秒前
26秒前
27秒前
朱砂完成签到,获得积分10
28秒前
共享精神应助nickel采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493621
求助须知:如何正确求助?哪些是违规求助? 4591657
关于积分的说明 14434342
捐赠科研通 4524055
什么是DOI,文献DOI怎么找? 2478579
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436426