清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

REDef-DETR: real-time and efficient DETR for industrial surface defect detection

计算机科学 环境科学
作者
Dejian Li,Changhong Jiang,Tielin Liang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105411-105411 被引量:5
标识
DOI:10.1088/1361-6501/ad60ea
摘要

Abstract Industrial surface defect detection is an important part of industrial production, which aims to identify and detecting various defects on the surface of product to ensure quality and meet customer requirements. With the development of deep learning and image processing technologies, the surface defect detection methods based on computer vision has become the mainstream method. However, the prevalent convolutional neural network-based defect detection methods also have many problems. For example, these methods rely on post-processing of Non-Maximum Suppression and have poor detection ability for small targets, which affects the speed and accuracy of surface defect detection in industrial scenarios. Therefore, we propose a novel DEtection TRansformer-based surface defect detection method. Firstly, we propose a Multi-scale Contextual Information Dilated module and fuse it into the backbone. The module is mainly composed of large kernel convolutions, which aims to expand the receptive field of the model, thus reducing the leakage rate of the model. Moreover, we design an efficient encoder which mainly contains two important modules, namely feature enhancement based on cascaded group attention module and efficient feature fusion module based on content-aware. The former module effectively enhances the high-level semantic information extracted by the backbone, thus enabling the model to better interpret features, and it can improve the problem of high computational cost of transformer encoder, thus increasing the detection speed. The latter module performs multi-scale feature fusion across the feature information of various scales, thus improving the detection accuracy of the model for small-size defects. Experimental results show that the proposed method achieves 80.6%mAP and 80.3FPS on NEU-DET, and 98.0%mAP and 79.4FPS on PCB-DET. Our proposed method exhibits excellent detection performance and achieves real-time and efficient surface defect detection capability to meet the needs of industrial surface defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助幸福的靳采纳,获得10
2秒前
fishway发布了新的文献求助10
3秒前
llj001完成签到,获得积分10
4秒前
李健应助LSYY采纳,获得10
12秒前
18秒前
大帅比完成签到 ,获得积分10
22秒前
fishway发布了新的文献求助10
29秒前
44秒前
49秒前
kentonchow应助蓝波采纳,获得30
1分钟前
1分钟前
fishway发布了新的文献求助10
1分钟前
1分钟前
LSYY发布了新的文献求助10
1分钟前
fishway发布了新的文献求助10
1分钟前
Qian完成签到 ,获得积分10
1分钟前
CodeCraft应助双手外科结采纳,获得10
1分钟前
fishway发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
科研通AI6应助fishway采纳,获得10
2分钟前
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
幸福的靳发布了新的文献求助10
2分钟前
幸福的靳完成签到,获得积分10
2分钟前
fishway发布了新的文献求助10
3分钟前
orixero应助kkm采纳,获得10
3分钟前
專注完美近乎苛求完成签到 ,获得积分10
3分钟前
3分钟前
钉钉完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
kkm发布了新的文献求助10
3分钟前
无悔完成签到 ,获得积分10
3分钟前
fishway发布了新的文献求助10
3分钟前
3分钟前
BowieHuang完成签到,获得积分10
3分钟前
清水完成签到,获得积分10
3分钟前
文献蚂蚁完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418494
求助须知:如何正确求助?哪些是违规求助? 4534207
关于积分的说明 14143270
捐赠科研通 4450428
什么是DOI,文献DOI怎么找? 2441241
邀请新用户注册赠送积分活动 1432967
关于科研通互助平台的介绍 1410352