Modeling Paths and History for Temporal Knowledge Graph Reasoning

计算机科学 推论 加速 人工智能 图形 推理系统 路径(计算) 常识推理 基于模型的推理 机器学习 理论计算机科学 知识表示与推理 程序设计语言 操作系统
作者
Yue Chen,Yongzhong Huang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4741391/v1
摘要

Abstract Knowledge Graph (KG) reasoning is a crucial task that discovers potential and unknown knowledge based on the existing knowledge. Temporal Knowledge Graph (TKG) reasoning is more challenging than KG reasoning because the additional temporal information needs to be handled. Previous TKG reasoning methods restrict the search space to avoid huge computational consumption, resulting in a decrease in accuracy. In order to improve the accuracy and efficiency of TKG reasoning, a model CMPH (Combination Model of Paths and History) is proposed, which consists of a path memory network and a history memory network. The former finds the paths in advance by a TKG path search algorithm and learns to memorize the recurrent pattern for reasoning, which prevents path search at inference stage. The latter adopts efficient encoder-decoder architecture to learn the features of historical events in TKG, which can avoid tackling a large number of structural dependencies and increase the reasoning accuracy. To take the advantages of these two types of memory networks, a gate component is designed to integrate them for better performance. Extensive experiments on four real-world datasets demonstrate that the proposed model obtains substantial performance and efficiency improvement for the TKG reasoning tasks. Especially, it achieves up to 8.6% and 11.8% improvements in MRR and hit@1 respectively, and up to 21 times speedup at inference stage comparing to the state-of-the-art baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术大白完成签到 ,获得积分10
2秒前
2秒前
SYT完成签到,获得积分10
3秒前
4秒前
6秒前
6秒前
6秒前
7秒前
7秒前
魏伯安发布了新的文献求助10
7秒前
7秒前
zhouleiwang完成签到,获得积分10
8秒前
李爱国应助aiming采纳,获得10
9秒前
无奈傲菡完成签到,获得积分10
10秒前
TT发布了新的文献求助10
10秒前
啦啦啦发布了新的文献求助10
11秒前
sun发布了新的文献求助10
12秒前
荣荣完成签到,获得积分10
12秒前
13秒前
小安完成签到,获得积分10
14秒前
Spencer完成签到 ,获得积分10
14秒前
PengHu完成签到,获得积分10
15秒前
15秒前
17秒前
19秒前
19秒前
19秒前
ywang发布了新的文献求助10
20秒前
失眠虔纹完成签到,获得积分10
20秒前
斯文败类应助nextconnie采纳,获得10
20秒前
药学牛马发布了新的文献求助10
24秒前
24秒前
25秒前
28秒前
张无缺完成签到,获得积分10
31秒前
33秒前
CodeCraft应助MES采纳,获得10
34秒前
笨笨乘风完成签到,获得积分10
35秒前
田様应助axunQAQ采纳,获得10
37秒前
完美秋烟发布了新的文献求助10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849