Modeling Paths and History for Temporal Knowledge Graph Reasoning

计算机科学 推论 加速 人工智能 图形 推理系统 路径(计算) 常识推理 基于模型的推理 机器学习 理论计算机科学 知识表示与推理 程序设计语言 操作系统
作者
Yue Chen,Yongzhong Huang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4741391/v1
摘要

Abstract Knowledge Graph (KG) reasoning is a crucial task that discovers potential and unknown knowledge based on the existing knowledge. Temporal Knowledge Graph (TKG) reasoning is more challenging than KG reasoning because the additional temporal information needs to be handled. Previous TKG reasoning methods restrict the search space to avoid huge computational consumption, resulting in a decrease in accuracy. In order to improve the accuracy and efficiency of TKG reasoning, a model CMPH (Combination Model of Paths and History) is proposed, which consists of a path memory network and a history memory network. The former finds the paths in advance by a TKG path search algorithm and learns to memorize the recurrent pattern for reasoning, which prevents path search at inference stage. The latter adopts efficient encoder-decoder architecture to learn the features of historical events in TKG, which can avoid tackling a large number of structural dependencies and increase the reasoning accuracy. To take the advantages of these two types of memory networks, a gate component is designed to integrate them for better performance. Extensive experiments on four real-world datasets demonstrate that the proposed model obtains substantial performance and efficiency improvement for the TKG reasoning tasks. Especially, it achieves up to 8.6% and 11.8% improvements in MRR and hit@1 respectively, and up to 21 times speedup at inference stage comparing to the state-of-the-art baseline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡老六发布了新的文献求助10
1秒前
努力的扣扣酱完成签到,获得积分10
2秒前
3秒前
悲凉的千柔完成签到 ,获得积分10
3秒前
Jasper应助子小孙采纳,获得10
4秒前
呢喃完成签到,获得积分10
4秒前
mumu完成签到,获得积分10
5秒前
丘比特应助gyc采纳,获得10
7秒前
丘比特应助mmm采纳,获得10
7秒前
麻雀完成签到 ,获得积分10
8秒前
37927给37927的求助进行了留言
9秒前
11秒前
11秒前
ding应助咩咩咩咩采纳,获得10
12秒前
12秒前
jyy完成签到,获得积分10
13秒前
13秒前
15秒前
16秒前
16秒前
雪白不斜发布了新的文献求助10
17秒前
Dou发布了新的文献求助10
17秒前
wanci应助kuki采纳,获得10
19秒前
pera发布了新的文献求助10
20秒前
子小孙发布了新的文献求助10
20秒前
不朽之王发布了新的文献求助10
21秒前
21秒前
花痴的小松鼠完成签到 ,获得积分10
22秒前
26秒前
27秒前
27秒前
咩咩咩咩发布了新的文献求助10
28秒前
刘可歆完成签到 ,获得积分10
28秒前
大模型应助单纯的秋天采纳,获得10
30秒前
雪白不斜完成签到 ,获得积分10
30秒前
gyc发布了新的文献求助10
31秒前
kuki发布了新的文献求助10
31秒前
懵懂的苡关注了科研通微信公众号
32秒前
传奇3应助明理的雨南采纳,获得10
33秒前
嗯哼应助nn采纳,获得20
33秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228046
求助须知:如何正确求助?哪些是违规求助? 2875959
关于积分的说明 8193272
捐赠科研通 2543114
什么是DOI,文献DOI怎么找? 1373502
科研通“疑难数据库(出版商)”最低求助积分说明 646781
邀请新用户注册赠送积分活动 621276