A machine learning model utilizing delphian lymph node characteristics to predict contralateral central lymph node metastasis in papillary thyroid carcinoma: A prospective multicenter study

医学 颈淋巴结 甲状腺癌 淋巴结 淋巴 逻辑回归 放射科 前瞻性队列研究 转移 肿瘤科 机器学习 内科学 癌症 病理 甲状腺 计算机科学
作者
Jialing He,Yu-zhao Yan,Yan Zhang,J D Li,Fei Wang,Yi You,Wei Liu,Ying Hu,Minghao Wang,Qingwen Pan,Yan Liang,Ming-shijing Ren,Zi-wei Wu,Kai You,Yi Zhang,Jun Jiang,Peng Tang
出处
期刊:International Journal of Surgery [Elsevier]
被引量:1
标识
DOI:10.1097/js9.0000000000002020
摘要

Background: This study aimed to use artificial intelligence (AI) to integrate various radiological and clinical pathological data to identify effective predictors of contralateral cervical lymph node metastasis (CCLNM) in patients with papillary thyroid carcinoma (PTC) and to establish a clinically applicable model to guide the extent of surgery. Methods: This prospective cohort study included 603 patients with PTC from three centers. Clinical, pathological, and ultrasonographic data were collected and utilized to develop a machine learning (ML) model for predicting CCLNM. Model development at the internal center utilized logistic regression along with other ML algorithms. Diagnostic efficacy was compared among these methods, leading to the adoption of the final model (random forest). This model was subject to AI interpretation and externally validated at other centers. Results: CCLNM was associated with multiple pathological factors. The Delphian lymph node metastasis ratio, ipsilateral cervical lymph node metastasis number, and presence of ipsilateral cervical lymph node metastasis were independent risk factors for CCLNM. Following feature selection, a Delphian lymph node-CCLNM (D-CCLNM) model was established using the Random forest algorithm based on five attributes. The D-CCLNM model demonstrated the highest area under the curve (AUC; 0.9273) in the training cohort and exhibited high predictive accuracy, with AUCs of 0.8907 and 0.9247 in the external and validation cohorts, respectively. Conclusions: We developed a new, effective method that uses ML to predict CCLNM in patients with PTC. This approach integrates data from Delphian lymph nodes and clinical characteristics, offering a foundation for guiding surgical decisions, and is conveniently applicable in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助半柚采纳,获得10
刚刚
只好完成签到 ,获得积分20
1秒前
科研通AI5应助张小医采纳,获得10
1秒前
kk发布了新的文献求助10
2秒前
流星完成签到,获得积分10
2秒前
大个应助jie采纳,获得10
4秒前
5秒前
Lay发布了新的文献求助10
6秒前
6秒前
科研通AI5应助yory采纳,获得10
8秒前
8秒前
橙子完成签到 ,获得积分10
9秒前
卡琳完成签到 ,获得积分10
9秒前
夏沫发布了新的文献求助10
9秒前
kk完成签到,获得积分10
9秒前
乐乐应助乌拉拉采纳,获得10
10秒前
空空完成签到,获得积分10
10秒前
Fury发布了新的文献求助10
10秒前
王晓发布了新的文献求助10
11秒前
11秒前
jie完成签到,获得积分20
11秒前
12秒前
12秒前
hush完成签到,获得积分10
13秒前
七堇完成签到,获得积分20
14秒前
15秒前
科研通AI5应助yq采纳,获得10
16秒前
16秒前
只好发布了新的文献求助10
16秒前
17秒前
田様应助神羊采纳,获得10
17秒前
18秒前
帅气的宽发布了新的文献求助10
19秒前
科研通AI5应助meng采纳,获得10
20秒前
YuLu发布了新的文献求助10
21秒前
情怀应助jinzheng采纳,获得10
21秒前
xx发布了新的文献求助10
22秒前
上官若男应助lucky采纳,获得10
22秒前
科研小小小白完成签到,获得积分10
23秒前
dudu完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589979
求助须知:如何正确求助?哪些是违规求助? 3158436
关于积分的说明 9519836
捐赠科研通 2861379
什么是DOI,文献DOI怎么找? 1572442
邀请新用户注册赠送积分活动 737920
科研通“疑难数据库(出版商)”最低求助积分说明 722567