Integrating network pharmacology, molecular docking and experimental verification to reveal the mechanism of artesunate in inhibiting choroidal melanoma

青蒿琥酯 药理学 对接(动物) 机制(生物学) 黑色素瘤 医学 计算生物学 传统医学 癌症研究 生物 病理 认识论 哲学 护理部 疟疾 恶性疟原虫
作者
Qingyue Ma,Yuan‐Jun Liu,Qian Zhang,Wenjun Yi,Yungang Sun,Xiaodi Gao,Xintong Zhao,Haowen Wang,Ke Lei,Wenjuan Luo
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fphar.2024.1448381
摘要

Background Artesunate (ART), a natural compound derived from Artemisia annua , has shown promising clinical potentials in the treatment of various tumors, but the exact mechanism is unclear. Choroidal melanoma (CM) is a major malignant ocular tumor in adults, known for its significant malignancy and poor prognosis, with limited efficacy in current treatments. This study explored the anti-CM effects and mechanisms of ART using a combination of network pharmacology, molecular docking and experimental validation. Methods Potential targets of ART were screened in PubChem, Swiss Target Prediction and Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database Analysis Platform databases, while target genes related to CM prognosis were selected from Online Mendelian Inheritance in Man (OMIM), GeneCards and DisGeNET databases. The intersection of these two groups of datasets yielded the target genes of ART involved in CM. Protein-protein interaction (PPI) network analysis of the intersecting targets, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were conducted to identify core targets and critical pathways. Molecular docking methods were performed to predict the binding interactions between ART and core targets. The effects of ART on CM were evaluated through CCK8, colony formation, transwell, as well as flow cytometry assays to detect apoptosis, cell cycle, reactive oxygen species (ROS). Western blot (WB) assays were conducted to investigate the impact of ART on key proteins and pathways associated with CM. Finally, in vivo assays were conducted to further validate the effects of ART on subcutaneous tumors in nude mice. Results Research has shown that key pathways and core targets for ART in treating CM were identified through a network pharmacology approach. Molecular docking results verified the strong binding affinity between ART and these core targets. The analysis and predicted results indicated that ART primarily exerted its effects on CM through various tumor-related pathways like apoptosis. The assays in vitro confirmed that ART significantly inhibited the proliferation and migration of CM cells. This was achieved by promoting apoptosis through activation of the p53 signaling pathway, causing cell cycle arrest at the G0/G1 phase by inhibiting the PI3K/AKT/mTOR signaling pathway and increasing the intracellular level of ROS by activating the NRF2/HO-1 signaling pathway. Additionally, the assays in vivo further validated the significant proliferation-inhibitory effect of ART on CM. Conclusion This study, making the initial exploration, illustrated through network pharmacology combined with molecular docking and in vitro / in vivo assays, confirmed that ART exerted potential anti-cancer effects on CM by promoting apoptosis, inducing cell cycle arrest and increasing intracellular levels of ROS. These findings suggested that ART held significant therapeutic potential for CM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研怪人采纳,获得10
2秒前
2秒前
3秒前
2025110031077发布了新的文献求助10
3秒前
美丽的冰枫完成签到,获得积分10
4秒前
爱吃大米完成签到,获得积分10
5秒前
6秒前
自由寻冬发布了新的文献求助10
6秒前
小羊发布了新的文献求助10
7秒前
8秒前
Ffffff发布了新的文献求助10
8秒前
李爱国应助zhihaiyu采纳,获得10
8秒前
淡定碧玉完成签到,获得积分10
8秒前
8秒前
orixero应助葛稀采纳,获得10
10秒前
华仔应助yo一天采纳,获得10
10秒前
小翠11完成签到,获得积分10
11秒前
义气的断秋完成签到,获得积分10
11秒前
NicotineZen发布了新的文献求助10
11秒前
玄枵完成签到,获得积分10
12秒前
12秒前
淡定碧玉发布了新的文献求助10
13秒前
14秒前
14秒前
Grace发布了新的文献求助10
15秒前
15秒前
赵哲完成签到 ,获得积分10
15秒前
16秒前
16秒前
lcj1014完成签到,获得积分20
17秒前
17秒前
moyu123发布了新的文献求助10
18秒前
ding应助潇洒的冰淇淋采纳,获得10
18秒前
蛋卷发布了新的文献求助10
18秒前
禾下乘凉发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
隐形曼青应助01采纳,获得10
21秒前
yzt发布了新的文献求助10
21秒前
淡淡尔烟发布了新的文献求助10
21秒前
yep发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497