亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Res-GCN: identification of protein phosphorylation sites using graph convolutional network and residual network

残余物 图形 鉴定(生物学) 计算机科学 磷酸化 计算生物学 化学 生物化学 生物 理论计算机科学 算法 植物
作者
Minghui Wang,Jihua Jia,Fei Xu,Hongyan Zhou,Yushuang Liu,Bin Yu
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:112: 108183-108183 被引量:1
标识
DOI:10.1016/j.compbiolchem.2024.108183
摘要

An essential post-translational modification, phosphorylation is intimately related with a wide range of biological activities. The advancement of effective computational methods for correctly recognizing phosphorylation sites is important for in-depth understanding of various physiological phenomena. However, the traditional method of identifying phosphorylation sites experimentally is time-consuming and laborious, which makes it difficult to meet the processing demands of today's big data. This research proposes the use of a novel model, Res-GCN, to recognize the phosphorylation sites of SARS-CoV-2. Firstly, eight feature extraction strategies are utilized to digitize the protein sequence from multiple viewpoints, including amino acid property encodings (AAindex), pseudo-amino acid composition (PseAAC), adapted normal distribution bi-profile Bayes (ANBPB), dipeptide composition (DC), binary encoding (BE), enhanced amino acid composition (EAAC), Word2Vec, and BLOSUM62 matrices. Secondly, elastic net is utilized to eliminate redundant data in the fused matrix. Finally, a combination of graph convolutional network (GCN) and residual network (ResNet) is used to classify the phosphorylated sites and output predictions using a fully connected layer (FC). The performance of Res-GCN is tested by 5-fold cross-validation and independent testing, and excellent results are obtained on S/T and Y datasets. This demonstrates that the Res-GCN model exhibits exceptional predictive performance and generalizability. A novel method Res-GCN is first used to predict phosphorylation sites. BLOSUM62, BE, EAAC, ANBPB, DC, AAindex, PseAAC and Word2Vec are fused to convert protein sequence information into digital information. The Elastic Net is employed to remove redundant and irrelevant features to select the optimal feature subset. The graph convolutional network (GCN) is used to learn and represent amino acid residues in the optimal feature subset, and then the learned features are input into the residual network (ResNet) to predict phosphorylation sites, the result is output through the fully connected layer. The results show that the Res-GCN can capture important feature information and achieve good prediction performance for phosphorylation sites. • A novel method (Res-GCN) to predict protein phosphorylation sites. • The AAindex, PseAAC, ANBPB, DC, BE, EAAC, Word2Vec, and BLOSUM62 matrices are fused to extract protein sequence features. • The Elastic Net is used to screen optimal feature subset for the first time. • We firstly combine graph convolutional network and residual network to predict the phosphorylation sites. • Res-GCN improves prediction performance compared to existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
supermaltose发布了新的文献求助10
28秒前
39秒前
snowskating发布了新的文献求助10
42秒前
supermaltose完成签到,获得积分10
52秒前
ys完成签到 ,获得积分10
1分钟前
Hello应助一这那西采纳,获得50
2分钟前
整齐白秋完成签到 ,获得积分10
2分钟前
snowskating完成签到,获得积分20
2分钟前
我亦化身东海去完成签到,获得积分10
2分钟前
Evooolet发布了新的文献求助10
3分钟前
3分钟前
笨笨山芙完成签到 ,获得积分10
4分钟前
ywzwszl完成签到,获得积分0
4分钟前
MGraceLi_sci完成签到,获得积分10
4分钟前
科研通AI5应助星星采纳,获得30
5分钟前
老迟到的友桃完成签到 ,获得积分10
5分钟前
sharronnie完成签到 ,获得积分10
6分钟前
6分钟前
星星发布了新的文献求助30
6分钟前
6分钟前
shanks发布了新的文献求助10
6分钟前
yi完成签到,获得积分10
6分钟前
shanks完成签到,获得积分10
6分钟前
7分钟前
乐乐应助飘着的鬼采纳,获得10
7分钟前
孙国扬发布了新的文献求助10
7分钟前
7分钟前
酷波er应助孙国扬采纳,获得10
7分钟前
飘着的鬼发布了新的文献求助10
7分钟前
星星完成签到,获得积分20
7分钟前
魔法师完成签到,获得积分0
7分钟前
科研通AI5应助飘着的鬼采纳,获得30
7分钟前
7分钟前
孙国扬发布了新的文献求助10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
JamesPei应助孙国扬采纳,获得10
8分钟前
潘云逸发布了新的文献求助10
8分钟前
潘云逸完成签到 ,获得积分10
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926763
求助须知:如何正确求助?哪些是违规求助? 4196356
关于积分的说明 13032482
捐赠科研通 3968676
什么是DOI,文献DOI怎么找? 2175096
邀请新用户注册赠送积分活动 1192250
关于科研通互助平台的介绍 1102649