Res-GCN: identification of protein phosphorylation sites using graph convolutional network and residual network

残余物 图形 鉴定(生物学) 计算机科学 磷酸化 计算生物学 化学 生物化学 生物 理论计算机科学 算法 植物
作者
Minghui Wang,Jihua Jia,Fei Xu,Hongyan Zhou,Yushuang Liu,Bin Yu
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:112: 108183-108183 被引量:1
标识
DOI:10.1016/j.compbiolchem.2024.108183
摘要

An essential post-translational modification, phosphorylation is intimately related with a wide range of biological activities. The advancement of effective computational methods for correctly recognizing phosphorylation sites is important for in-depth understanding of various physiological phenomena. However, the traditional method of identifying phosphorylation sites experimentally is time-consuming and laborious, which makes it difficult to meet the processing demands of today's big data. This research proposes the use of a novel model, Res-GCN, to recognize the phosphorylation sites of SARS-CoV-2. Firstly, eight feature extraction strategies are utilized to digitize the protein sequence from multiple viewpoints, including amino acid property encodings (AAindex), pseudo-amino acid composition (PseAAC), adapted normal distribution bi-profile Bayes (ANBPB), dipeptide composition (DC), binary encoding (BE), enhanced amino acid composition (EAAC), Word2Vec, and BLOSUM62 matrices. Secondly, elastic net is utilized to eliminate redundant data in the fused matrix. Finally, a combination of graph convolutional network (GCN) and residual network (ResNet) is used to classify the phosphorylated sites and output predictions using a fully connected layer (FC). The performance of Res-GCN is tested by 5-fold cross-validation and independent testing, and excellent results are obtained on S/T and Y datasets. This demonstrates that the Res-GCN model exhibits exceptional predictive performance and generalizability. A novel method Res-GCN is first used to predict phosphorylation sites. BLOSUM62, BE, EAAC, ANBPB, DC, AAindex, PseAAC and Word2Vec are fused to convert protein sequence information into digital information. The Elastic Net is employed to remove redundant and irrelevant features to select the optimal feature subset. The graph convolutional network (GCN) is used to learn and represent amino acid residues in the optimal feature subset, and then the learned features are input into the residual network (ResNet) to predict phosphorylation sites, the result is output through the fully connected layer. The results show that the Res-GCN can capture important feature information and achieve good prediction performance for phosphorylation sites. • A novel method (Res-GCN) to predict protein phosphorylation sites. • The AAindex, PseAAC, ANBPB, DC, BE, EAAC, Word2Vec, and BLOSUM62 matrices are fused to extract protein sequence features. • The Elastic Net is used to screen optimal feature subset for the first time. • We firstly combine graph convolutional network and residual network to predict the phosphorylation sites. • Res-GCN improves prediction performance compared to existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyanchong完成签到,获得积分10
1秒前
科研通AI2S应助summer采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
漂亮天真完成签到,获得积分10
2秒前
草莓雪酪应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
七月流火应助科研通管家采纳,获得150
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
老迟到的土豆完成签到 ,获得积分10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
小八统治世界完成签到,获得积分10
2秒前
七月流火应助科研通管家采纳,获得150
2秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
雷乾发布了新的文献求助10
3秒前
3秒前
3秒前
下雨天的树完成签到,获得积分10
3秒前
FR完成签到,获得积分10
4秒前
缓慢天菱完成签到,获得积分10
4秒前
fhhkckk3发布了新的文献求助20
4秒前
liuxinyu完成签到 ,获得积分10
4秒前
4秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
5秒前
blink完成签到,获得积分10
6秒前
6秒前
今天要早睡完成签到,获得积分10
6秒前
钩子89应助同尘采纳,获得20
7秒前
Levi李发布了新的文献求助10
7秒前
东日完成签到,获得积分10
7秒前
cheng4046完成签到,获得积分10
7秒前
zz2905完成签到,获得积分10
8秒前
悠夏sunny完成签到,获得积分0
8秒前
ttkd11完成签到,获得积分10
8秒前
8秒前
小马甲应助瘦瘦半山采纳,获得10
9秒前
昨夜雨疏风骤完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256668
求助须知:如何正确求助?哪些是违规求助? 4418830
关于积分的说明 13753577
捐赠科研通 4292020
什么是DOI,文献DOI怎么找? 2355264
邀请新用户注册赠送积分活动 1351704
关于科研通互助平台的介绍 1312465