Res-GCN: identification of protein phosphorylation sites using graph convolutional network and residual network

残余物 图形 鉴定(生物学) 计算机科学 磷酸化 计算生物学 化学 生物化学 生物 理论计算机科学 算法 植物
作者
Minghui Wang,Jihua Jia,Fei Xu,Hongyan Zhou,Yushuang Liu,Bin Yu
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:112: 108183-108183 被引量:1
标识
DOI:10.1016/j.compbiolchem.2024.108183
摘要

An essential post-translational modification, phosphorylation is intimately related with a wide range of biological activities. The advancement of effective computational methods for correctly recognizing phosphorylation sites is important for in-depth understanding of various physiological phenomena. However, the traditional method of identifying phosphorylation sites experimentally is time-consuming and laborious, which makes it difficult to meet the processing demands of today's big data. This research proposes the use of a novel model, Res-GCN, to recognize the phosphorylation sites of SARS-CoV-2. Firstly, eight feature extraction strategies are utilized to digitize the protein sequence from multiple viewpoints, including amino acid property encodings (AAindex), pseudo-amino acid composition (PseAAC), adapted normal distribution bi-profile Bayes (ANBPB), dipeptide composition (DC), binary encoding (BE), enhanced amino acid composition (EAAC), Word2Vec, and BLOSUM62 matrices. Secondly, elastic net is utilized to eliminate redundant data in the fused matrix. Finally, a combination of graph convolutional network (GCN) and residual network (ResNet) is used to classify the phosphorylated sites and output predictions using a fully connected layer (FC). The performance of Res-GCN is tested by 5-fold cross-validation and independent testing, and excellent results are obtained on S/T and Y datasets. This demonstrates that the Res-GCN model exhibits exceptional predictive performance and generalizability. A novel method Res-GCN is first used to predict phosphorylation sites. BLOSUM62, BE, EAAC, ANBPB, DC, AAindex, PseAAC and Word2Vec are fused to convert protein sequence information into digital information. The Elastic Net is employed to remove redundant and irrelevant features to select the optimal feature subset. The graph convolutional network (GCN) is used to learn and represent amino acid residues in the optimal feature subset, and then the learned features are input into the residual network (ResNet) to predict phosphorylation sites, the result is output through the fully connected layer. The results show that the Res-GCN can capture important feature information and achieve good prediction performance for phosphorylation sites. • A novel method (Res-GCN) to predict protein phosphorylation sites. • The AAindex, PseAAC, ANBPB, DC, BE, EAAC, Word2Vec, and BLOSUM62 matrices are fused to extract protein sequence features. • The Elastic Net is used to screen optimal feature subset for the first time. • We firstly combine graph convolutional network and residual network to predict the phosphorylation sites. • Res-GCN improves prediction performance compared to existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lifenghou完成签到 ,获得积分10
2秒前
复方黄桃干完成签到 ,获得积分10
3秒前
8秒前
典雅三颜完成签到 ,获得积分10
10秒前
10秒前
jzz应助故意的怜晴采纳,获得200
11秒前
12秒前
JamesPei应助Epiphany采纳,获得10
16秒前
chenjian完成签到 ,获得积分10
17秒前
研友_LBRPOL发布了新的文献求助10
17秒前
拓小八完成签到,获得积分10
19秒前
佳期如梦完成签到 ,获得积分10
19秒前
朴素的紫安完成签到 ,获得积分10
20秒前
yes完成签到 ,获得积分10
25秒前
bkagyin应助tian采纳,获得10
27秒前
FashionBoy应助tian采纳,获得10
27秒前
35秒前
何果果完成签到,获得积分10
41秒前
量子星尘发布了新的文献求助10
45秒前
巴啦啦小魔仙完成签到 ,获得积分10
48秒前
无一完成签到 ,获得积分0
56秒前
57秒前
1分钟前
deniroming完成签到,获得积分10
1分钟前
Moonchild完成签到 ,获得积分10
1分钟前
kingfly2010完成签到,获得积分10
1分钟前
1分钟前
zombleq完成签到 ,获得积分10
1分钟前
1分钟前
学好久完成签到 ,获得积分10
1分钟前
白小橘完成签到 ,获得积分10
1分钟前
蛋卷完成签到 ,获得积分10
1分钟前
燕子完成签到,获得积分10
1分钟前
水晶李完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助50
1分钟前
mmd完成签到 ,获得积分10
1分钟前
tian完成签到,获得积分10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
joeqin完成签到,获得积分10
1分钟前
栗子完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015568
求助须知:如何正确求助?哪些是违规求助? 3555555
关于积分的说明 11318118
捐赠科研通 3288718
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015