Res-GCN: identification of protein phosphorylation sites using graph convolutional network and residual network

残余物 图形 鉴定(生物学) 计算机科学 磷酸化 计算生物学 化学 生物化学 生物 理论计算机科学 算法 植物
作者
Minghui Wang,Jihua Jia,Fei Xu,Hongyan Zhou,Yushuang Liu,Bin Yu
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:112: 108183-108183 被引量:1
标识
DOI:10.1016/j.compbiolchem.2024.108183
摘要

An essential post-translational modification, phosphorylation is intimately related with a wide range of biological activities. The advancement of effective computational methods for correctly recognizing phosphorylation sites is important for in-depth understanding of various physiological phenomena. However, the traditional method of identifying phosphorylation sites experimentally is time-consuming and laborious, which makes it difficult to meet the processing demands of today's big data. This research proposes the use of a novel model, Res-GCN, to recognize the phosphorylation sites of SARS-CoV-2. Firstly, eight feature extraction strategies are utilized to digitize the protein sequence from multiple viewpoints, including amino acid property encodings (AAindex), pseudo-amino acid composition (PseAAC), adapted normal distribution bi-profile Bayes (ANBPB), dipeptide composition (DC), binary encoding (BE), enhanced amino acid composition (EAAC), Word2Vec, and BLOSUM62 matrices. Secondly, elastic net is utilized to eliminate redundant data in the fused matrix. Finally, a combination of graph convolutional network (GCN) and residual network (ResNet) is used to classify the phosphorylated sites and output predictions using a fully connected layer (FC). The performance of Res-GCN is tested by 5-fold cross-validation and independent testing, and excellent results are obtained on S/T and Y datasets. This demonstrates that the Res-GCN model exhibits exceptional predictive performance and generalizability. A novel method Res-GCN is first used to predict phosphorylation sites. BLOSUM62, BE, EAAC, ANBPB, DC, AAindex, PseAAC and Word2Vec are fused to convert protein sequence information into digital information. The Elastic Net is employed to remove redundant and irrelevant features to select the optimal feature subset. The graph convolutional network (GCN) is used to learn and represent amino acid residues in the optimal feature subset, and then the learned features are input into the residual network (ResNet) to predict phosphorylation sites, the result is output through the fully connected layer. The results show that the Res-GCN can capture important feature information and achieve good prediction performance for phosphorylation sites. • A novel method (Res-GCN) to predict protein phosphorylation sites. • The AAindex, PseAAC, ANBPB, DC, BE, EAAC, Word2Vec, and BLOSUM62 matrices are fused to extract protein sequence features. • The Elastic Net is used to screen optimal feature subset for the first time. • We firstly combine graph convolutional network and residual network to predict the phosphorylation sites. • Res-GCN improves prediction performance compared to existing models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
做好胶水发布了新的文献求助10
1秒前
小王小王发布了新的文献求助10
1秒前
Twonej应助轻松笙采纳,获得30
1秒前
香蕉觅云应助饱满访蕊采纳,获得10
1秒前
顾矜应助整齐碧玉采纳,获得10
2秒前
2秒前
Jared应助electromx采纳,获得20
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
所所应助zhangxq采纳,获得10
4秒前
4秒前
文静季节发布了新的文献求助10
4秒前
5秒前
5秒前
优雅愚志完成签到,获得积分10
5秒前
月圆夜应助舒适蜗牛采纳,获得50
6秒前
橙小胖发布了新的文献求助10
6秒前
敬之发布了新的文献求助10
6秒前
哈哈哈发布了新的文献求助10
6秒前
6秒前
7秒前
jin完成签到,获得积分10
7秒前
开心阑悦发布了新的文献求助10
8秒前
搜集达人应助LHW采纳,获得10
8秒前
dian完成签到,获得积分10
8秒前
传奇3应助快乐觅露采纳,获得10
8秒前
言西早完成签到 ,获得积分10
9秒前
风清扬发布了新的文献求助10
9秒前
活力怀绿完成签到,获得积分10
10秒前
上官若男应助surivial采纳,获得10
10秒前
10秒前
10秒前
10秒前
耿耿完成签到,获得积分10
10秒前
梁辉完成签到,获得积分10
11秒前
彭于晏应助风181013采纳,获得10
11秒前
素霞发布了新的文献求助10
12秒前
失眠惜海完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851