亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Res-GCN: identification of protein phosphorylation sites using graph convolutional network and residual network

残余物 图形 鉴定(生物学) 计算机科学 磷酸化 计算生物学 化学 生物化学 生物 理论计算机科学 算法 植物
作者
Minghui Wang,Jihua Jia,Fei Xu,Hongyan Zhou,Yushuang Liu,Bin Yu
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:112: 108183-108183 被引量:1
标识
DOI:10.1016/j.compbiolchem.2024.108183
摘要

An essential post-translational modification, phosphorylation is intimately related with a wide range of biological activities. The advancement of effective computational methods for correctly recognizing phosphorylation sites is important for in-depth understanding of various physiological phenomena. However, the traditional method of identifying phosphorylation sites experimentally is time-consuming and laborious, which makes it difficult to meet the processing demands of today's big data. This research proposes the use of a novel model, Res-GCN, to recognize the phosphorylation sites of SARS-CoV-2. Firstly, eight feature extraction strategies are utilized to digitize the protein sequence from multiple viewpoints, including amino acid property encodings (AAindex), pseudo-amino acid composition (PseAAC), adapted normal distribution bi-profile Bayes (ANBPB), dipeptide composition (DC), binary encoding (BE), enhanced amino acid composition (EAAC), Word2Vec, and BLOSUM62 matrices. Secondly, elastic net is utilized to eliminate redundant data in the fused matrix. Finally, a combination of graph convolutional network (GCN) and residual network (ResNet) is used to classify the phosphorylated sites and output predictions using a fully connected layer (FC). The performance of Res-GCN is tested by 5-fold cross-validation and independent testing, and excellent results are obtained on S/T and Y datasets. This demonstrates that the Res-GCN model exhibits exceptional predictive performance and generalizability. A novel method Res-GCN is first used to predict phosphorylation sites. BLOSUM62, BE, EAAC, ANBPB, DC, AAindex, PseAAC and Word2Vec are fused to convert protein sequence information into digital information. The Elastic Net is employed to remove redundant and irrelevant features to select the optimal feature subset. The graph convolutional network (GCN) is used to learn and represent amino acid residues in the optimal feature subset, and then the learned features are input into the residual network (ResNet) to predict phosphorylation sites, the result is output through the fully connected layer. The results show that the Res-GCN can capture important feature information and achieve good prediction performance for phosphorylation sites. • A novel method (Res-GCN) to predict protein phosphorylation sites. • The AAindex, PseAAC, ANBPB, DC, BE, EAAC, Word2Vec, and BLOSUM62 matrices are fused to extract protein sequence features. • The Elastic Net is used to screen optimal feature subset for the first time. • We firstly combine graph convolutional network and residual network to predict the phosphorylation sites. • Res-GCN improves prediction performance compared to existing models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助科研通管家采纳,获得30
26秒前
ektyz发布了新的文献求助10
1分钟前
夏爽2023完成签到,获得积分10
1分钟前
三心草完成签到 ,获得积分10
2分钟前
直率的笑翠完成签到 ,获得积分10
3分钟前
所所应助Luke采纳,获得10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
5分钟前
Luke发布了新的文献求助10
5分钟前
星辰大海应助Luke采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
科研通AI6应助Party采纳,获得10
5分钟前
一一关注了科研通微信公众号
5分钟前
5分钟前
Luke发布了新的文献求助10
6分钟前
娟子完成签到,获得积分10
6分钟前
一一发布了新的文献求助30
6分钟前
6分钟前
知悉发布了新的文献求助10
6分钟前
zxcvvbb1001完成签到 ,获得积分10
7分钟前
7分钟前
奋斗一刀发布了新的文献求助10
7分钟前
一一发布了新的文献求助10
7分钟前
7分钟前
8分钟前
烟花应助科研通管家采纳,获得10
8分钟前
8分钟前
易一完成签到 ,获得积分10
8分钟前
xch发布了新的文献求助10
8分钟前
xch完成签到,获得积分10
8分钟前
8分钟前
斑驳完成签到,获得积分10
9分钟前
9分钟前
乐乐应助斑驳采纳,获得10
9分钟前
霹雳Young发布了新的文献求助10
9分钟前
传奇3应助Luke采纳,获得10
9分钟前
9分钟前
9分钟前
斑驳发布了新的文献求助10
9分钟前
9分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644861
求助须知:如何正确求助?哪些是违规求助? 4766125
关于积分的说明 15025801
捐赠科研通 4803216
什么是DOI,文献DOI怎么找? 2568094
邀请新用户注册赠送积分活动 1525557
关于科研通互助平台的介绍 1485107