已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DSANet: Dynamic and Structure-Aware GCN for Sparse and Incomplete Point Cloud Learning

计算机科学 点云 云计算 点(几何) 人工智能 数学 几何学 操作系统
作者
Yushi Li,George Baciu,Rong Chen,Chenhui Li,Hao Wang,Yushan Pan,Weiping Ding
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3439706
摘要

Learning 3-D structures from incomplete point clouds with extreme sparsity and random distributions is a challenge since it is difficult to infer topological connectivity and structural details from fragmentary representations. Missing large portions of informative structures further aggravates this problem. To overcome this, a novel graph convolutional network (GCN) called dynamic and structure-aware NETwork (DSANet) is presented in this article. This framework is formulated based on a pyramidic auto-encoder (AE) architecture to address accurate structure reconstruction on the sparse and incomplete point clouds. A PointNet-like neural network is applied as the encoder to efficiently aggregate the global representations of coarse point clouds. On the decoder side, we design a dynamic graph learning module with a structure-aware attention (SAA) to take advantage of the topology relationships maintained in the dynamic latent graph. Relying on gradually unfolding the extracted representation into a sequence of graphs, DSANet is able to reconstruct complicated point clouds with rich and descriptive details. To associate analogous structure awareness with semantic estimation, we further propose a mechanism, called structure similarity assessment (SSA). This method allows our model to surmise semantic homogeneity in an unsupervised manner. Finally, we optimize the proposed model by minimizing a new distortion-aware objective end-to-end. Extensive qualitative and quantitative experiments demonstrate the impressive performance of our model in reconstructing unbroken 3-D shapes from deficient point clouds and preserving semantic relationships among different regional structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li完成签到,获得积分10
2秒前
萌小鱼完成签到 ,获得积分10
3秒前
zdyfychenyan完成签到 ,获得积分20
3秒前
小马甲应助曹能豪采纳,获得10
7秒前
小北完成签到,获得积分10
8秒前
8秒前
immunity完成签到,获得积分10
13秒前
14秒前
Lucas应助赤恩采纳,获得10
15秒前
曹能豪发布了新的文献求助10
17秒前
Virtual应助life采纳,获得20
17秒前
Hanny发布了新的文献求助30
18秒前
18秒前
沸腾的大海完成签到,获得积分10
21秒前
zdyfychenyan关注了科研通微信公众号
22秒前
22秒前
外向的如冰完成签到,获得积分10
23秒前
26秒前
27秒前
SUNNYONE完成签到 ,获得积分10
28秒前
天天快乐应助科研通管家采纳,获得10
28秒前
脑洞疼应助科研通管家采纳,获得10
28秒前
小马甲应助科研通管家采纳,获得10
28秒前
思源应助科研通管家采纳,获得10
28秒前
单薄绿竹完成签到,获得积分10
29秒前
life完成签到,获得积分10
29秒前
潇洒的语蝶完成签到 ,获得积分10
31秒前
32秒前
赤恩发布了新的文献求助10
32秒前
32秒前
科研通AI5应助泥巴采纳,获得10
32秒前
多久上课发布了新的文献求助10
33秒前
Touching完成签到 ,获得积分10
33秒前
34秒前
深情安青应助多久上课采纳,获得10
36秒前
多发paper啊完成签到,获得积分10
36秒前
科研通AI6应助小憨憨采纳,获得10
37秒前
life关注了科研通微信公众号
40秒前
充电宝应助啰友痕武次子采纳,获得10
41秒前
小蘑菇完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581261
求助须知:如何正确求助?哪些是违规求助? 3999239
关于积分的说明 12380921
捐赠科研通 3673784
什么是DOI,文献DOI怎么找? 2024768
邀请新用户注册赠送积分活动 1058578
科研通“疑难数据库(出版商)”最低求助积分说明 945295