DSANet: Dynamic and Structure-Aware GCN for Sparse and Incomplete Point Cloud Learning

计算机科学 点云 云计算 点(几何) 人工智能 数学 几何学 操作系统
作者
Yushi Li,George Baciu,Rong Chen,Chenhui Li,Hao Wang,Yushan Pan,Weiping Ding
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3439706
摘要

Learning 3-D structures from incomplete point clouds with extreme sparsity and random distributions is a challenge since it is difficult to infer topological connectivity and structural details from fragmentary representations. Missing large portions of informative structures further aggravates this problem. To overcome this, a novel graph convolutional network (GCN) called dynamic and structure-aware NETwork (DSANet) is presented in this article. This framework is formulated based on a pyramidic auto-encoder (AE) architecture to address accurate structure reconstruction on the sparse and incomplete point clouds. A PointNet-like neural network is applied as the encoder to efficiently aggregate the global representations of coarse point clouds. On the decoder side, we design a dynamic graph learning module with a structure-aware attention (SAA) to take advantage of the topology relationships maintained in the dynamic latent graph. Relying on gradually unfolding the extracted representation into a sequence of graphs, DSANet is able to reconstruct complicated point clouds with rich and descriptive details. To associate analogous structure awareness with semantic estimation, we further propose a mechanism, called structure similarity assessment (SSA). This method allows our model to surmise semantic homogeneity in an unsupervised manner. Finally, we optimize the proposed model by minimizing a new distortion-aware objective end-to-end. Extensive qualitative and quantitative experiments demonstrate the impressive performance of our model in reconstructing unbroken 3-D shapes from deficient point clouds and preserving semantic relationships among different regional structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心之王发布了新的文献求助10
刚刚
桐桐应助shinn采纳,获得10
1秒前
2秒前
双生客发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
零度酷冷发布了新的文献求助10
5秒前
懒羊羊完成签到,获得积分10
6秒前
WILLJ完成签到,获得积分10
7秒前
爱卿5271完成签到,获得积分10
7秒前
脑洞疼应助开心之王采纳,获得10
7秒前
7秒前
8秒前
163发布了新的文献求助10
8秒前
棠堂发布了新的文献求助10
8秒前
dandiaojun完成签到,获得积分10
8秒前
嘿嘿嘿发布了新的文献求助10
8秒前
万能图书馆应助愛迪采纳,获得10
9秒前
dandiaojun发布了新的文献求助10
11秒前
我是老大应助勤恳傻姑采纳,获得10
12秒前
干净的秋柳完成签到,获得积分10
12秒前
12秒前
13秒前
Hello应助Steven采纳,获得10
14秒前
14秒前
163完成签到,获得积分10
18秒前
18秒前
易念发布了新的文献求助10
18秒前
愉快的宛秋完成签到,获得积分10
19秒前
热水泡jio发布了新的文献求助10
19秒前
Maxine完成签到 ,获得积分10
19秒前
19秒前
21秒前
李小鑫吖发布了新的文献求助10
22秒前
入暖发布了新的文献求助10
24秒前
秋雨完成签到,获得积分10
24秒前
24秒前
26秒前
小冬猫完成签到 ,获得积分10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967402
求助须知:如何正确求助?哪些是违规求助? 3512674
关于积分的说明 11164607
捐赠科研通 3247562
什么是DOI,文献DOI怎么找? 1793955
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498