DSANet: Dynamic and Structure-Aware GCN for Sparse and Incomplete Point Cloud Learning

计算机科学 点云 云计算 点(几何) 人工智能 数学 几何学 操作系统
作者
Yushi Li,George Baciu,Rong Chen,Chenhui Li,Hao Wang,Yushan Pan,Weiping Ding
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3439706
摘要

Learning 3-D structures from incomplete point clouds with extreme sparsity and random distributions is a challenge since it is difficult to infer topological connectivity and structural details from fragmentary representations. Missing large portions of informative structures further aggravates this problem. To overcome this, a novel graph convolutional network (GCN) called dynamic and structure-aware NETwork (DSANet) is presented in this article. This framework is formulated based on a pyramidic auto-encoder (AE) architecture to address accurate structure reconstruction on the sparse and incomplete point clouds. A PointNet-like neural network is applied as the encoder to efficiently aggregate the global representations of coarse point clouds. On the decoder side, we design a dynamic graph learning module with a structure-aware attention (SAA) to take advantage of the topology relationships maintained in the dynamic latent graph. Relying on gradually unfolding the extracted representation into a sequence of graphs, DSANet is able to reconstruct complicated point clouds with rich and descriptive details. To associate analogous structure awareness with semantic estimation, we further propose a mechanism, called structure similarity assessment (SSA). This method allows our model to surmise semantic homogeneity in an unsupervised manner. Finally, we optimize the proposed model by minimizing a new distortion-aware objective end-to-end. Extensive qualitative and quantitative experiments demonstrate the impressive performance of our model in reconstructing unbroken 3-D shapes from deficient point clouds and preserving semantic relationships among different regional structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁四叔应助晨曦采纳,获得10
1秒前
小鹿发布了新的文献求助10
2秒前
zhouzhou发布了新的文献求助10
2秒前
wxnice发布了新的文献求助10
3秒前
调皮的背包完成签到,获得积分20
4秒前
6秒前
haitun完成签到,获得积分10
6秒前
6秒前
zjy完成签到,获得积分10
6秒前
6秒前
123完成签到 ,获得积分10
7秒前
完美问玉关注了科研通微信公众号
7秒前
7秒前
fei菲飞完成签到,获得积分10
8秒前
hello完成签到,获得积分10
8秒前
9秒前
我是雅婷完成签到,获得积分10
9秒前
9秒前
xuanhaha完成签到,获得积分20
9秒前
mashuai发布了新的文献求助10
10秒前
禾平应助obsession采纳,获得30
10秒前
小鹿完成签到,获得积分10
10秒前
小小小发布了新的文献求助10
10秒前
xin关注了科研通微信公众号
10秒前
566发布了新的文献求助10
11秒前
11秒前
斯文败类应助Polydexury采纳,获得10
12秒前
舟舟完成签到,获得积分10
13秒前
晨晨发布了新的文献求助10
13秒前
13秒前
我是老大应助zhouzhou采纳,获得10
13秒前
1213发布了新的文献求助10
13秒前
妮妮发布了新的文献求助10
14秒前
大模型应助甜甜飞扬采纳,获得10
14秒前
喜悦恶天完成签到,获得积分20
15秒前
janejane发布了新的文献求助10
15秒前
16秒前
16秒前
潇洒完成签到,获得积分10
16秒前
xuanhaha发布了新的文献求助10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487798
求助须知:如何正确求助?哪些是违规求助? 3075697
关于积分的说明 9141664
捐赠科研通 2767951
什么是DOI,文献DOI怎么找? 1518837
邀请新用户注册赠送积分活动 703346
科研通“疑难数据库(出版商)”最低求助积分说明 701805