Ultraviolet visible spectral water chemical oxygen demand detection method based on two deep neural network model

化学 紫外线 化学需氧量 人工神经网络 氧气 紫外可见光谱 可见光谱 人工智能 光学 有机化学 物理 废水 计算机科学 工程类 废物管理
作者
Xiaojun Zhang,Yiwen Cai,Feng Wang,Jin Wu,Xiaoyu Liu
出处
期刊:Spectroscopy Letters [Taylor & Francis]
卷期号:: 1-12
标识
DOI:10.1080/00387010.2024.2395326
摘要

Water resources are precious resources around the world, but pollution is becoming increasingly severe. While the degree of damage to water caused by organic pollutants is reflected by chemical oxygen demand, which is also an important indicator for hydrological monitoring. Therefore, accurate measurement of chemical oxygen demand is necessary. The rapid development of water quality detection by ultraviolet visible spectrum analysis as an efficient, convenient, and pollution-free new water quality detection method has been achieved. When we were processing ultraviolet visible spectral absorbance data, various environmental factors can affect the chemical oxygen demand light absorption value, thus affecting the accuracy of detection. So there are some goals, such as more comprehensively extracting the feature wavelength and reducing the interference to achieve better detection results. It is expected that the model can be applied to a portable water quality detection device. It is necessary to consider detection time, reduce model training parameters, and improve detection speed. Therefore, this article proposes Competitive Adaptive Weighted Sampling-Convolutional Neural Network-Long Short-Term Memory and Competitive Adaptive Weighted Sampling-Convolutional Long Short-Term Memory models for detecting chemical oxygen demand in water. To verify the effectiveness of the proposed model, the model was trained on the experimental dataset and the detection results of all models involved in the article were compared. It can be confirmed that the application of these two proposed algorithms results in less detection time and higher accuracy in concentration detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SYLH应助默默若枫采纳,获得10
2秒前
Gladys完成签到,获得积分10
2秒前
打打应助ri_290采纳,获得10
2秒前
Luke发布了新的文献求助10
4秒前
5秒前
橘子星发布了新的文献求助10
5秒前
Charles发布了新的文献求助10
5秒前
taotao完成签到,获得积分10
6秒前
王铭元完成签到 ,获得积分10
6秒前
Amber完成签到,获得积分10
6秒前
华仔应助huhu采纳,获得10
6秒前
zhangyifan666应助奇异果采纳,获得10
6秒前
许珩发布了新的文献求助10
8秒前
忧心的不言完成签到,获得积分10
9秒前
开放盼海发布了新的文献求助10
9秒前
9秒前
10秒前
Light完成签到,获得积分10
10秒前
11秒前
Mandy完成签到 ,获得积分10
12秒前
12秒前
Light发布了新的文献求助10
14秒前
15秒前
15秒前
花花猪1989发布了新的文献求助10
16秒前
外向沅完成签到,获得积分10
17秒前
永不言弃发布了新的文献求助10
18秒前
lgh19950929完成签到,获得积分20
18秒前
18秒前
Jasper应助桥豆麻袋美少女采纳,获得10
19秒前
魏猛发布了新的文献求助10
20秒前
潇洒的诗桃应助xuexue采纳,获得10
21秒前
yangmiemie发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
24秒前
顺心靖雁完成签到,获得积分10
25秒前
一加一完成签到,获得积分20
26秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726605
求助须知:如何正确求助?哪些是违规求助? 3271632
关于积分的说明 9972883
捐赠科研通 2987028
什么是DOI,文献DOI怎么找? 1638626
邀请新用户注册赠送积分活动 778179
科研通“疑难数据库(出版商)”最低求助积分说明 747508