微塑料
海湾
环境化学
环境科学
生态学
生物
化学
地理
考古
作者
Xue Yu,Yufei Liu,Cuiling Tan,Lifang Zhai,Tianjiao Wang,Jing Fang,Bo Zhang,Weiqi Ma,Xueqiang Lu
标识
DOI:10.1016/j.scitotenv.2024.174968
摘要
Small-sized microplastics (MPs) pose greater ecological toxicity due to their larger surface area, which makes them more likely to act as carriers for other pollutants and to be ingested by aquatic organisms. However, traditional visual analysis often neglects small-sized MPs and their associated ecological risk. This study utilized Laser Direct Infrared (LDIR) spectroscopy and traditional visual analysis to examine MPs in 31 sediment samples from Jinzhou Bay, a typical semi-enclosed bay located at the economic center of Dalian, China. The results showed significant heterogeneity in MP distribution, with averages of 1192 and 2361 items/kg dry weight reported by visual analysis and LDIR spectroscopy, respectively. LDIR spectroscopy identified MPs as small as 10 μm, with the majority of MPs (89.21 %) within the 10-250 μm range, and a significant proportion (46.45 %) between 10 and 50 μm among them. However, visual analysis was limited to detecting MPs >50 μm, and significant portions were identified between 50 and 100 μm (49.36 %) and 100-250 μm (31.01 %), missing a substantial fraction of smaller MPs. The predominant polymers identified were polyamide (PA), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and acrylonitrile butadiene styrene (ABS). LDIR spectroscopy demonstrated a strong positive correlation between MP abundance and clay content, a relationship not observed with traditional visual analysis. The Potential Ecological Risk Index (PERI) indicated that over 87 % of sites posed an extremely high risk according to LDIR spectroscopy, compared to 51 % by traditional visual analysis. These discrepancy underscores the underestimation of ecological risks by traditional methods, particularly for small-sized MPs. High-risk polymers such as polyvinyl chloride (PVC), ABS, and polyurethane (PUR) significantly influenced PERI values. These findings highlight the critical need for precise identification and thorough risk assessment of small-sized MPs in environmental studies and offer insights for understanding of MP vertical migration in aquatic environments, particularly in the context of co-settlement with sediments.
科研通智能强力驱动
Strongly Powered by AbleSci AI