亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Monitoring of the Weld Pool, Keyhole Morphology and Material Penetration State in Near-Infrared and Blue Composite Laser Welding of Magnesium Alloy

锁孔 焊接 材料科学 激光束焊接 激光器 镁合金 复合数 冶金 复合材料 光学 物理
作者
Wei Wei,Yang Liu,Haolin Deng,Zhilin Wei,T. Wang,G. Li
出处
期刊:Journal of manufacturing and materials processing [Multidisciplinary Digital Publishing Institute]
卷期号:8 (4): 150-150 被引量:1
标识
DOI:10.3390/jmmp8040150
摘要

The laser welding of magnesium alloys presents challenges attributed to their low laser-absorbing efficiency, resulting in instabilities during the welding process and substandard welding quality. Furthermore, the complexity of signals during laser welding processes makes it difficult to accurately monitor the molten state of magnesium alloys. In this study, magnesium alloys were welded using near-infrared and blue lasers. By varying the power of the near-infrared laser, the energy absorption pattern of magnesium alloys toward the composite laser was investigated. The U-Net model was employed for the segmentation of welding images to accurately extract the features of the melt pool and keyhole. Subsequently, the penetrating states were predicted using the convolutional neural network (CNN), and the novel approach employing Local Binary Pattern (LBP) features + a backpropagation (BP) neural network was applied for comparison. The extracted images achieved MPA and MIoU values of 89.54% and 81.81%, and the prediction accuracy of the model can reach up to 100%. The applicability of the two monitoring approaches in different scenarios was discussed, providing guidance for the quality of magnesium welding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
顾矜应助就炫炫桑采纳,获得10
7秒前
科研通AI5应助雪梨101采纳,获得20
14秒前
xmg完成签到,获得积分10
15秒前
科研通AI5应助青果采纳,获得30
20秒前
ORAzzz完成签到,获得积分10
20秒前
26秒前
英俊的铭应助开鑫采纳,获得10
27秒前
For-t-发布了新的文献求助10
29秒前
苹果灵槐完成签到,获得积分10
32秒前
33秒前
34秒前
39秒前
青果发布了新的文献求助30
39秒前
开鑫发布了新的文献求助10
42秒前
遇楹完成签到 ,获得积分10
50秒前
852应助苹果灵槐采纳,获得10
1分钟前
1分钟前
年鱼精完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
HY完成签到 ,获得积分10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
Ava应助果糖不加糖采纳,获得10
2分钟前
2分钟前
Demi_Ming发布了新的文献求助10
2分钟前
2分钟前
苹果灵槐发布了新的文献求助10
2分钟前
2分钟前
肖偷偷发布了新的文献求助10
3分钟前
3分钟前
特别圆的正方形完成签到 ,获得积分10
3分钟前
3分钟前
徐涛完成签到 ,获得积分10
3分钟前
For-t-完成签到,获得积分10
3分钟前
3分钟前
3分钟前
雪梨101发布了新的文献求助20
3分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733350
求助须知:如何正确求助?哪些是违规求助? 3277588
关于积分的说明 10003346
捐赠科研通 2993529
什么是DOI,文献DOI怎么找? 1642743
邀请新用户注册赠送积分活动 780596
科研通“疑难数据库(出版商)”最低求助积分说明 748912