材料科学
阴极
电压
电池(电)
阳极
掺杂剂
共晶体系
纳米技术
兴奋剂
化学工程
工程物理
光电子学
电气工程
电极
微观结构
复合材料
功率(物理)
化学
物理
物理化学
量子力学
工程类
作者
Haocheng Ji,Junxiong Wang,Haotian Qu,Junfeng Li,Wenhai Ji,Xiao Qiu,Yanfei Zhu,Hengyu Ren,Ruyu Shi,Guanjun Ji,Wenguang Zhao,Guangmin Zhou
标识
DOI:10.1002/adma.202407029
摘要
Abstract Facing the resource and environmental pressures brought by the retiring wave of lithium‐ion batteries (LIBs), direct recycling methods are considered to be the next generation's solution. However, the contradiction between limited battery life and the demand for rapidly iterating technology forces the direct recovery paradigm to shift toward “direct upcycling.” Herein, a closed‐loop direct upcycling strategy that converts waste current collector debris into dopants is proposed, and a highly inclusive eutectic molten salt system is utilized to repair structural defects in degraded polycrystalline LiNi 0.83 Co 0.12 Mn 0.05 O 2 cathodes while achieving single‐crystallization transformation and introducing Al/Cu dual‐doping. Upcycled materials can effectively overcome the two key challenges at high voltages: strain accumulation and lattice oxygen evolution. It exhibits comprehensive electrochemical performance far superior to commercial materials at 4.6 V, especially its fast charging capability at 15 C, and an impressive 91.1% capacity retention after 200 cycles in a 1.2 Ah pouch cell. Importantly, this approach demonstrates broad applicability to various spent layered cathodes, particularly showcasing its value in the recycling of mixed spent cathodes. This work effectively bridges the gap between waste management and material performance enhancement, offering a sustainable path for the recycling of spent LIBs and the production of next‐generation high‐voltage cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI