生物
发病机制
传输(电信)
病毒学
冠状病毒
先天免疫系统
大流行
病毒复制
免疫
病毒
免疫系统
病毒病机
免疫学
2019年冠状病毒病(COVID-19)
医学
疾病
病理
传染病(医学专业)
电气工程
工程类
作者
Mario A. Peña-Hernández,Mia Madel Alfajaro,Renata B. Filler,Miyu Moriyama,Emma L. Keeler,Zara E. Ranglin,Yong Kong,Tianyang Mao,Bridget L. Menasché,Madeleine C. Mankowski,Zhe Zhao,Chantal B. F. Vogels,Anne M. Hahn,Chaney C. Kalinich,Shuo Zhang,Nicholas C. Huston,Han Wan,Rafael de Cesaris Araujo Tavares,Brett D. Lindenbach,Robert Homer
标识
DOI:10.1038/s41564-024-01765-z
摘要
Circulating bat coronaviruses represent a pandemic threat. However, our understanding of bat coronavirus pathogenesis and transmission potential is limited by the lack of phenotypically characterized strains. We created molecular clones for the two closest known relatives of SARS-CoV-2, BANAL-52 and BANAL-236. We demonstrated that BANAL-CoVs and SARS-CoV-2 have similar replication kinetics in human bronchial epithelial cells. However, BANAL-CoVs have impaired replication in human nasal epithelial cells and in the upper airway of mice. We also observed reduced pathogenesis in mice and diminished transmission in hamsters. Further, we observed that diverse bat coronaviruses evade interferon and downregulate major histocompatibility complex class I. Collectively, our study demonstrates that despite high genetic similarity across bat coronaviruses, prediction of pandemic potential of a virus necessitates functional characterization. Finally, the restriction of bat coronavirus replication in the upper airway highlights that transmission potential and innate immune restriction can be uncoupled in this high-risk family of emerging viruses. Characterizing infection, pathogenesis and transmission of BANAL-52 and BANAL-236 in primary respiratory cells, mice and hamsters shows how viruses closely related to SARS-CoV-2 present a threat for spillover.
科研通智能强力驱动
Strongly Powered by AbleSci AI