吸附
纳米孔
化学
传质
扩散
焓
动力学
多孔介质
二氧化碳
热力学
多孔性
化学工程
活性炭
纳米技术
色谱法
有机化学
材料科学
工程类
物理
量子力学
作者
M Verstreken,Nicolas Chanut,Yann Magnin,Héctor Octavio Rubiera Landa,Joeri Denayer,Gino V. Baron,Rob Ameloot
摘要
Adsorptive separations by nanoporous materials are major industrial processes. The industrial importance of solid adsorbents is only expected to grow due to the increased focus on carbon dioxide capture technology and energy-efficient separations. To evaluate the performance of an adsorbent and design a separation process, the adsorption thermodynamics and kinetics must be known. However, although diffusion kinetics determine the maximum production rate in any adsorption-based separation, this aspect has received less attention due to the challenges associated with conducting diffusion measurements. These challenges are exacerbated in the study of shaped adsorbents due to the presence of porosity at different length scales. As a result, adsorbent selection typically relies mainly on adsorption properties at equilibrium, i.e., uptake capacity, selectivity and adsorption enthalpy. In this Perspective, based on an extensive literature review on mass transfer of CO
科研通智能强力驱动
Strongly Powered by AbleSci AI