Energy Dissipation and Toughening of Covalent Networks via a Sacrificial Conformation Approach

增韧 共价键 消散 材料科学 化学 纳米技术 物理 韧性 有机化学 复合材料 热力学
作者
Hao Wang,Zhiyou Wei,Zhiwei Liu,Bin Zheng,Zhaoming Zhang,Xuzhou Yan,Linli He,Tao Li,Dong Zhao
出处
期刊:Angewandte Chemie [Wiley]
卷期号:137 (4) 被引量:2
标识
DOI:10.1002/ange.202416790
摘要

Abstract Covalent polymer networks find wide utility in diverse engineering applications owing to their desirable stiffness and resilience. However, the rigid covalent chemical structure between crosslinking points imposes limitations on enhancing their toughness. Although the incorporation of sacrificial chemical bonds has shown promise in improving toughness through energy dissipation, composite networks struggle to maintain both rapid recovery and stiffness. Consequently, a significant challenge persists in achieving a covalent network that combines high strength, stiffness, toughness, and fast recovery performance. To address this challenge, we propose a novel sacrificial structure termed “sacrificial conformation.” In this approach, β‐cyclodextrin is covalently embedded into the network skeleton as the sacrificial conformation element. Compared to traditional covalent networks (LCN), well‐designed cyclodextrin‐embedded covalent network (CCN) exhibit a 100‐fold increase in Young's modulus and a 60‐fold increase in toughness. Importantly, CCN maintains excellent elasticity, ensuring swift recovery after deformation. This sacrificial conformational strategy enables efficient energy dissipation without necessitating the rupture of chemical bonds, thereby overcoming the limitations of traditional approaches. This advancement holds great promise for the design and fabrication of advanced elastomers and hydrogels with superior mechanical properties and dynamic behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
池林完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
5秒前
上官若男应助zh1858f采纳,获得10
6秒前
xiaoxioayixi发布了新的文献求助10
7秒前
高天雨发布了新的文献求助10
7秒前
Ecokarster发布了新的文献求助10
9秒前
9秒前
isvv发布了新的文献求助20
12秒前
Jasper应助义气的羽毛采纳,获得10
13秒前
KY完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
天天完成签到,获得积分10
14秒前
原野发布了新的文献求助10
14秒前
海人完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
小马甲应助qqqqqq采纳,获得10
17秒前
17秒前
18秒前
Rain完成签到,获得积分10
18秒前
科目三应助liuying采纳,获得10
18秒前
www268完成签到,获得积分10
18秒前
Ecokarster完成签到,获得积分10
21秒前
21秒前
23秒前
共享精神应助Guo采纳,获得10
23秒前
英俊的铭应助诚心黑夜采纳,获得10
23秒前
24秒前
24秒前
billevans发布了新的文献求助30
24秒前
25秒前
大个应助fengjingjing采纳,获得10
25秒前
科研通AI6.1应助DG采纳,获得10
27秒前
Criminology34举报ewbo求助涉嫌违规
27秒前
风趣烤鸡完成签到,获得积分10
27秒前
27秒前
隐形曼青应助xw采纳,获得10
28秒前
科研通AI6.1应助aoi采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323