Associative Learning and Active Inference

推论 结合属性 人工智能 计算机科学 联想学习 机器学习 心理学 认知科学 认知心理学 数学 纯数学
作者
Petr Anokhin,Artyom Sorokin,Mikhail Burtsev,Karl J. Friston
出处
期刊:Neural Computation [MIT Press]
卷期号:36 (12): 2602-2635
标识
DOI:10.1162/neco_a_01711
摘要

Abstract Associative learning is a behavioral phenomenon in which individuals develop connections between stimuli or events based on their co-occurrence. Initially studied by Pavlov in his conditioning experiments, the fundamental principles of learning have been expanded on through the discovery of a wide range of learning phenomena. Computational models have been developed based on the concept of minimizing reward prediction errors. The Rescorla-Wagner model, in particular, is a well-known model that has greatly influenced the field of reinforcement learning. However, the simplicity of these models restricts their ability to fully explain the diverse range of behavioral phenomena associated with learning. In this study, we adopt the free energy principle, which suggests that living systems strive to minimize surprise or uncertainty under their internal models of the world. We consider the learning process as the minimization of free energy and investigate its relationship with the Rescorla-Wagner model, focusing on the informational aspects of learning, different types of surprise, and prediction errors based on beliefs and values. Furthermore, we explore how well-known behavioral phenomena such as blocking, overshadowing, and latent inhibition can be modeled within the active inference framework. We accomplish this by using the informational and novelty aspects of attention, which share similar ideas proposed by seemingly contradictory models such as Mackintosh and Pearce-Hall models. Thus, we demonstrate that the free energy principle, as a theoretical framework derived from first principles, can integrate the ideas and models of associative learning proposed based on empirical experiments and serve as a framework for a better understanding of the computational processes behind associative learning in the brain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子海发布了新的文献求助10
刚刚
33发布了新的文献求助10
1秒前
科研傻蛋发布了新的文献求助10
1秒前
少年愁完成签到,获得积分10
2秒前
3秒前
Jasper应助秋秋秋采纳,获得10
3秒前
3秒前
Reftro发布了新的文献求助10
3秒前
lxy应助小米采纳,获得10
3秒前
4秒前
鱼鱼完成签到 ,获得积分10
4秒前
makunyi发布了新的文献求助10
4秒前
4秒前
研友_VZG7GZ应助螺蛳粉采纳,获得10
5秒前
里昂。完成签到,获得积分10
5秒前
5秒前
赘婿应助苦瓜采纳,获得10
5秒前
用九发布了新的文献求助10
6秒前
SSS发布了新的文献求助10
7秒前
miaojiaxin发布了新的文献求助10
7秒前
科目三应助猪猪采纳,获得10
7秒前
清图发布了新的文献求助20
7秒前
科研傻蛋完成签到,获得积分10
8秒前
123发布了新的文献求助10
9秒前
JamesPei应助不吃香菜采纳,获得10
10秒前
13秒前
15秒前
Lucas应助renshiq采纳,获得30
16秒前
小碗完成签到,获得积分10
17秒前
18秒前
安雯发布了新的文献求助10
18秒前
123完成签到,获得积分10
18秒前
螺蛳粉发布了新的文献求助10
19秒前
666完成签到 ,获得积分20
19秒前
19秒前
123完成签到,获得积分10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得30
22秒前
英姑应助科研通管家采纳,获得10
22秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228778
求助须知:如何正确求助?哪些是违规求助? 2876528
关于积分的说明 8195549
捐赠科研通 2543815
什么是DOI,文献DOI怎么找? 1374031
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621506