Associative Learning and Active Inference

推论 结合属性 人工智能 计算机科学 联想学习 机器学习 心理学 认知科学 认知心理学 数学 纯数学
作者
Petr Anokhin,Artyom Sorokin,Mikhail Burtsev,Karl J. Friston
出处
期刊:Neural Computation [The MIT Press]
卷期号:36 (12): 2602-2635
标识
DOI:10.1162/neco_a_01711
摘要

Abstract Associative learning is a behavioral phenomenon in which individuals develop connections between stimuli or events based on their co-occurrence. Initially studied by Pavlov in his conditioning experiments, the fundamental principles of learning have been expanded on through the discovery of a wide range of learning phenomena. Computational models have been developed based on the concept of minimizing reward prediction errors. The Rescorla-Wagner model, in particular, is a well-known model that has greatly influenced the field of reinforcement learning. However, the simplicity of these models restricts their ability to fully explain the diverse range of behavioral phenomena associated with learning. In this study, we adopt the free energy principle, which suggests that living systems strive to minimize surprise or uncertainty under their internal models of the world. We consider the learning process as the minimization of free energy and investigate its relationship with the Rescorla-Wagner model, focusing on the informational aspects of learning, different types of surprise, and prediction errors based on beliefs and values. Furthermore, we explore how well-known behavioral phenomena such as blocking, overshadowing, and latent inhibition can be modeled within the active inference framework. We accomplish this by using the informational and novelty aspects of attention, which share similar ideas proposed by seemingly contradictory models such as Mackintosh and Pearce-Hall models. Thus, we demonstrate that the free energy principle, as a theoretical framework derived from first principles, can integrate the ideas and models of associative learning proposed based on empirical experiments and serve as a framework for a better understanding of the computational processes behind associative learning in the brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可发布了新的文献求助10
1秒前
风中昊焱发布了新的文献求助10
1秒前
2秒前
古月发布了新的文献求助10
2秒前
2秒前
SYLH应助图图烤肉采纳,获得10
2秒前
畅快的人雄完成签到 ,获得积分20
3秒前
3秒前
超帅飞松完成签到,获得积分10
3秒前
3秒前
3秒前
孙昊宇关注了科研通微信公众号
4秒前
4秒前
SYLH应助欧阳采纳,获得10
4秒前
自然水风完成签到,获得积分10
5秒前
棋士发布了新的文献求助10
6秒前
叶泽完成签到,获得积分10
7秒前
7秒前
方东发布了新的文献求助10
7秒前
wdb发布了新的文献求助10
7秒前
Sophie完成签到,获得积分10
7秒前
8秒前
Betty发布了新的文献求助10
8秒前
chen发布了新的文献求助10
9秒前
Leo发布了新的文献求助30
9秒前
啦啦啦发布了新的文献求助10
9秒前
英俊的毛豆完成签到 ,获得积分10
9秒前
Ll完成签到,获得积分10
9秒前
cetomacrogol发布了新的文献求助10
9秒前
甜甜的小虾米完成签到,获得积分10
9秒前
hkh发布了新的文献求助10
10秒前
wanci应助蜘蛛道理采纳,获得10
10秒前
亚米完成签到,获得积分10
11秒前
汉堡包应助古月采纳,获得10
12秒前
袁向薇发布了新的文献求助10
12秒前
12秒前
cc完成签到,获得积分10
12秒前
英姑应助Lynn采纳,获得10
12秒前
鳗鱼寄瑶完成签到,获得积分10
12秒前
花花完成签到 ,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954999
求助须知:如何正确求助?哪些是违规求助? 3501277
关于积分的说明 11102247
捐赠科研通 3231584
什么是DOI,文献DOI怎么找? 1786477
邀请新用户注册赠送积分活动 870090
科研通“疑难数据库(出版商)”最低求助积分说明 801798