亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-Based Detection of Bladder Cancer by Urine cfDNA Fragmentation Hotspots that Capture Cancer-Associated Molecular Features

膀胱癌 液体活检 尿 医学 活检 肿瘤科 生物信息学 内科学 生物 癌症
作者
Xiangyu Meng,Xionghui Zhou,Shuo Li,Mingjun Shi,Xuanhao Li,Bo-Yu Yang,Min Liu,Kezhen Yi,Yunze Wang,Hongyu Zhang,Jian Song,Xinghuan Wang,Xinghuan Wang
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:70 (12): 1463-1473 被引量:11
标识
DOI:10.1093/clinchem/hvae156
摘要

Abstract Background cfDNA fragmentomics-based liquid biopsy is a potential option for noninvasive bladder cancer (BLCA) detection that remains an unmet clinical need. Methods We assessed the diagnostic performance of cfDNA hotspot-driven machine-learning models in a cohort of 55 BLCA patients, 51 subjects with benign conditions, and 11 healthy volunteers. We further performed functional bioinformatics analysis for biological understanding and interpretation of the tool’s diagnostic capability. Results Urinary cfDNA hotspots-based machine-learning model enabled effective BLCA detection, achieving high performance (area under curve 0.96) and an 87% sensitivity at 100% specificity. It outperformed models using other cfDNA-derived features. In stage-stratified analysis, the sensitivity at 100% specificity of the urine hotspots-based model was 71% and 92% for early (low-grade Ta and T1) and advanced (high-grade T1 and muscle-invasive) disease, respectively. Biologically, cfDNA hotspots effectively retrieved regulatory elements and were correlated with the cell of origin. Urine cfDNA hotspots specifically captured BLCA-related molecular features, including key functional pathways, chromosome loci associated with BLCA risk as identified in genome-wide association studies, or presenting frequent somatic alterations in BLCA tumors, and the transcription factor regulatory landscape. Conclusions Our findings support the applicability of urine cfDNA fragmentation hotspots for noninvasive BLCA diagnosis, as well as for future translational study regarding its molecular pathology and heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紧张的建辉完成签到,获得积分10
11秒前
Mic应助紧张的建辉采纳,获得10
16秒前
zy完成签到 ,获得积分10
24秒前
情怀应助Cmqq采纳,获得10
33秒前
46秒前
习习完成签到 ,获得积分10
50秒前
zhengqisong发布了新的文献求助10
52秒前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
搜集达人应助Cmqq采纳,获得10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
桓某人完成签到,获得积分10
2分钟前
小马甲应助guan采纳,获得10
2分钟前
xaopng完成签到,获得积分10
2分钟前
C_发布了新的文献求助50
2分钟前
吉他独奏手完成签到,获得积分10
2分钟前
诸觅双完成签到 ,获得积分10
2分钟前
2分钟前
guan发布了新的文献求助10
2分钟前
zhengqisong完成签到,获得积分10
2分钟前
2分钟前
受伤凌蝶完成签到 ,获得积分10
2分钟前
Cmqq发布了新的文献求助10
2分钟前
火鸡味锅巴完成签到 ,获得积分10
2分钟前
思源应助Cmqq采纳,获得10
3分钟前
3分钟前
TTZ完成签到 ,获得积分10
3分钟前
Cmqq发布了新的文献求助10
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
852应助Cmqq采纳,获得10
3分钟前
3分钟前
共享精神应助邢大志采纳,获得10
4分钟前
LONG完成签到 ,获得积分10
4分钟前
4分钟前
Cmqq发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599780
求助须知:如何正确求助?哪些是违规求助? 4685524
关于积分的说明 14838545
捐赠科研通 4670729
什么是DOI,文献DOI怎么找? 2538225
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904