亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-Based Detection of Bladder Cancer by Urine cfDNA Fragmentation Hotspots that Capture Cancer-Associated Molecular Features

膀胱癌 液体活检 尿 医学 活检 肿瘤科 生物信息学 内科学 生物 癌症
作者
Xiangyu Meng,Xionghui Zhou,Shuo Li,Mingjun Shi,Xuanhao Li,Bo-Yu Yang,Min Liu,Kezhen Yi,Yunze Wang,Hongyu Zhang,Jian Song,Xinghuan Wang,Xinghuan Wang
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:70 (12): 1463-1473 被引量:11
标识
DOI:10.1093/clinchem/hvae156
摘要

Abstract Background cfDNA fragmentomics-based liquid biopsy is a potential option for noninvasive bladder cancer (BLCA) detection that remains an unmet clinical need. Methods We assessed the diagnostic performance of cfDNA hotspot-driven machine-learning models in a cohort of 55 BLCA patients, 51 subjects with benign conditions, and 11 healthy volunteers. We further performed functional bioinformatics analysis for biological understanding and interpretation of the tool’s diagnostic capability. Results Urinary cfDNA hotspots-based machine-learning model enabled effective BLCA detection, achieving high performance (area under curve 0.96) and an 87% sensitivity at 100% specificity. It outperformed models using other cfDNA-derived features. In stage-stratified analysis, the sensitivity at 100% specificity of the urine hotspots-based model was 71% and 92% for early (low-grade Ta and T1) and advanced (high-grade T1 and muscle-invasive) disease, respectively. Biologically, cfDNA hotspots effectively retrieved regulatory elements and were correlated with the cell of origin. Urine cfDNA hotspots specifically captured BLCA-related molecular features, including key functional pathways, chromosome loci associated with BLCA risk as identified in genome-wide association studies, or presenting frequent somatic alterations in BLCA tumors, and the transcription factor regulatory landscape. Conclusions Our findings support the applicability of urine cfDNA fragmentation hotspots for noninvasive BLCA diagnosis, as well as for future translational study regarding its molecular pathology and heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
把饭拼好给你完成签到 ,获得积分10
2秒前
zhangjianzeng完成签到 ,获得积分10
4秒前
void发布了新的文献求助10
4秒前
aicz完成签到,获得积分10
5秒前
善学以致用应助tony采纳,获得30
12秒前
星辰大海应助陈文娜采纳,获得30
12秒前
wanjingwan完成签到 ,获得积分10
13秒前
13秒前
Jasper应助qinsu采纳,获得10
13秒前
bxb完成签到,获得积分10
15秒前
傻傻的从梦完成签到,获得积分10
15秒前
16秒前
鹅鹅大王发布了新的文献求助10
17秒前
任仕春完成签到,获得积分10
18秒前
anhuiwsy完成签到 ,获得积分0
19秒前
21秒前
21秒前
研友_VZG7GZ应助赵冰琪采纳,获得10
22秒前
tony发布了新的文献求助30
24秒前
进取拼搏完成签到,获得积分10
25秒前
27秒前
ckyyds完成签到 ,获得积分10
28秒前
void完成签到,获得积分10
31秒前
qinsu发布了新的文献求助10
32秒前
李昆朋完成签到,获得积分10
33秒前
36秒前
棠臻完成签到 ,获得积分10
40秒前
浮游应助合适的问旋采纳,获得10
41秒前
illuminate完成签到 ,获得积分10
42秒前
qinsu完成签到,获得积分20
46秒前
张美环完成签到,获得积分10
47秒前
媛肖完成签到 ,获得积分10
49秒前
50秒前
53秒前
53秒前
54秒前
56秒前
king完成签到 ,获得积分10
58秒前
陈文娜发布了新的文献求助30
58秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509205
求助须知:如何正确求助?哪些是违规求助? 4604206
关于积分的说明 14489373
捐赠科研通 4538907
什么是DOI,文献DOI怎么找? 2487224
邀请新用户注册赠送积分活动 1469636
关于科研通互助平台的介绍 1441867