Machine Learning-Based Detection of Bladder Cancer by Urine cfDNA Fragmentation Hotspots that Capture Cancer-Associated Molecular Features

膀胱癌 液体活检 尿 医学 活检 肿瘤科 生物信息学 内科学 生物 癌症
作者
Xiangyu Meng,Xionghui Zhou,Shuo Li,Mingjun Shi,Xuanhao Li,Bo-Yu Yang,Min Liu,Kezhen Yi,Yunze Wang,Hongyu Zhang,Jian Song,Xinghuan Wang,Xinghuan Wang
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:70 (12): 1463-1473 被引量:11
标识
DOI:10.1093/clinchem/hvae156
摘要

Abstract Background cfDNA fragmentomics-based liquid biopsy is a potential option for noninvasive bladder cancer (BLCA) detection that remains an unmet clinical need. Methods We assessed the diagnostic performance of cfDNA hotspot-driven machine-learning models in a cohort of 55 BLCA patients, 51 subjects with benign conditions, and 11 healthy volunteers. We further performed functional bioinformatics analysis for biological understanding and interpretation of the tool’s diagnostic capability. Results Urinary cfDNA hotspots-based machine-learning model enabled effective BLCA detection, achieving high performance (area under curve 0.96) and an 87% sensitivity at 100% specificity. It outperformed models using other cfDNA-derived features. In stage-stratified analysis, the sensitivity at 100% specificity of the urine hotspots-based model was 71% and 92% for early (low-grade Ta and T1) and advanced (high-grade T1 and muscle-invasive) disease, respectively. Biologically, cfDNA hotspots effectively retrieved regulatory elements and were correlated with the cell of origin. Urine cfDNA hotspots specifically captured BLCA-related molecular features, including key functional pathways, chromosome loci associated with BLCA risk as identified in genome-wide association studies, or presenting frequent somatic alterations in BLCA tumors, and the transcription factor regulatory landscape. Conclusions Our findings support the applicability of urine cfDNA fragmentation hotspots for noninvasive BLCA diagnosis, as well as for future translational study regarding its molecular pathology and heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奇异果果完成签到,获得积分10
刚刚
任小萱完成签到,获得积分10
刚刚
南瓜猫发布了新的文献求助10
刚刚
ginkgoleaf发布了新的文献求助10
刚刚
刚刚
Una完成签到,获得积分10
1秒前
p65完成签到,获得积分10
1秒前
yangmingyu发布了新的文献求助10
1秒前
义气莫茗完成签到 ,获得积分10
1秒前
Zx_1993应助勤奋太君采纳,获得20
1秒前
小包完成签到,获得积分10
1秒前
小何爱学习完成签到,获得积分10
1秒前
出其东门完成签到,获得积分10
2秒前
凯凯发布了新的文献求助10
2秒前
学术猪八戒完成签到,获得积分20
2秒前
叹千泠完成签到,获得积分10
2秒前
2秒前
3秒前
sxp1031完成签到,获得积分10
3秒前
自信的龙猫完成签到,获得积分10
3秒前
思源应助激情的随阴采纳,获得10
3秒前
4秒前
群q发布了新的文献求助10
4秒前
高挑的秋天完成签到,获得积分10
4秒前
4秒前
hhh完成签到,获得积分10
4秒前
blink_gmx完成签到,获得积分10
4秒前
5秒前
5秒前
知性的紫寒完成签到,获得积分10
5秒前
6秒前
zz发布了新的文献求助10
6秒前
古古怪界丶黑大帅完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
CipherSage应助dave采纳,获得10
7秒前
乐乐应助zmz采纳,获得10
7秒前
没有稗子完成签到 ,获得积分10
7秒前
沙青亦发布了新的文献求助10
7秒前
zhaoli发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005