亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-Based Detection of Bladder Cancer by Urine cfDNA Fragmentation Hotspots that Capture Cancer-Associated Molecular Features

膀胱癌 液体活检 尿 医学 活检 肿瘤科 生物信息学 内科学 生物 癌症
作者
Xiangyu Meng,Xionghui Zhou,Shuo Li,Mingjun Shi,Xuanhao Li,Bo-Yu Yang,Min Liu,Kezhen Yi,Yunze Wang,Hongyu Zhang,Jian Song,Xinghuan Wang,Xinghuan Wang
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:70 (12): 1463-1473 被引量:11
标识
DOI:10.1093/clinchem/hvae156
摘要

Abstract Background cfDNA fragmentomics-based liquid biopsy is a potential option for noninvasive bladder cancer (BLCA) detection that remains an unmet clinical need. Methods We assessed the diagnostic performance of cfDNA hotspot-driven machine-learning models in a cohort of 55 BLCA patients, 51 subjects with benign conditions, and 11 healthy volunteers. We further performed functional bioinformatics analysis for biological understanding and interpretation of the tool’s diagnostic capability. Results Urinary cfDNA hotspots-based machine-learning model enabled effective BLCA detection, achieving high performance (area under curve 0.96) and an 87% sensitivity at 100% specificity. It outperformed models using other cfDNA-derived features. In stage-stratified analysis, the sensitivity at 100% specificity of the urine hotspots-based model was 71% and 92% for early (low-grade Ta and T1) and advanced (high-grade T1 and muscle-invasive) disease, respectively. Biologically, cfDNA hotspots effectively retrieved regulatory elements and were correlated with the cell of origin. Urine cfDNA hotspots specifically captured BLCA-related molecular features, including key functional pathways, chromosome loci associated with BLCA risk as identified in genome-wide association studies, or presenting frequent somatic alterations in BLCA tumors, and the transcription factor regulatory landscape. Conclusions Our findings support the applicability of urine cfDNA fragmentation hotspots for noninvasive BLCA diagnosis, as well as for future translational study regarding its molecular pathology and heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘橘橘子皮完成签到 ,获得积分10
1秒前
LJL完成签到 ,获得积分10
1秒前
华仔应助HXZ采纳,获得30
2秒前
SciGPT应助Aulorra采纳,获得10
5秒前
深情安青应助科研小白采纳,获得10
5秒前
研友_VZG7GZ应助谦让丹翠采纳,获得10
8秒前
歪歪yyyyc完成签到,获得积分10
9秒前
17秒前
19秒前
WerWu完成签到,获得积分0
20秒前
传奇3应助鲤鱼惮采纳,获得10
23秒前
Ava应助伊斯塔战灵采纳,获得10
24秒前
谢江洋完成签到,获得积分10
25秒前
cheese完成签到,获得积分10
25秒前
lac813发布了新的文献求助10
25秒前
27秒前
养花低手完成签到 ,获得积分10
28秒前
35秒前
35秒前
35秒前
37秒前
lac813完成签到,获得积分10
39秒前
科研小白发布了新的文献求助10
39秒前
Auralis完成签到 ,获得积分10
41秒前
41秒前
41秒前
42秒前
小蘑菇应助火星上的山河采纳,获得10
45秒前
球球子完成签到,获得积分10
54秒前
55秒前
kk完成签到,获得积分10
59秒前
谦让丹翠发布了新的文献求助10
1分钟前
Ru完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171650
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164