Machine Learning-Based Detection of Bladder Cancer by Urine cfDNA Fragmentation Hotspots that Capture Cancer-Associated Molecular Features

膀胱癌 液体活检 尿 医学 活检 肿瘤科 生物信息学 内科学 生物 癌症
作者
Xiangyu Meng,Xionghui Zhou,Shuo Li,Mingjun Shi,Xuanhao Li,Bo-Yu Yang,Min Liu,Kezhen Yi,Yunze Wang,Hongyu Zhang,Jian Song,Xinghuan Wang,Xinghuan Wang
出处
期刊:Clinical Chemistry [American Association for Clinical Chemistry]
被引量:5
标识
DOI:10.1093/clinchem/hvae156
摘要

Abstract Background cfDNA fragmentomics-based liquid biopsy is a potential option for noninvasive bladder cancer (BLCA) detection that remains an unmet clinical need. Methods We assessed the diagnostic performance of cfDNA hotspot-driven machine-learning models in a cohort of 55 BLCA patients, 51 subjects with benign conditions, and 11 healthy volunteers. We further performed functional bioinformatics analysis for biological understanding and interpretation of the tool’s diagnostic capability. Results Urinary cfDNA hotspots-based machine-learning model enabled effective BLCA detection, achieving high performance (area under curve 0.96) and an 87% sensitivity at 100% specificity. It outperformed models using other cfDNA-derived features. In stage-stratified analysis, the sensitivity at 100% specificity of the urine hotspots-based model was 71% and 92% for early (low-grade Ta and T1) and advanced (high-grade T1 and muscle-invasive) disease, respectively. Biologically, cfDNA hotspots effectively retrieved regulatory elements and were correlated with the cell of origin. Urine cfDNA hotspots specifically captured BLCA-related molecular features, including key functional pathways, chromosome loci associated with BLCA risk as identified in genome-wide association studies, or presenting frequent somatic alterations in BLCA tumors, and the transcription factor regulatory landscape. Conclusions Our findings support the applicability of urine cfDNA fragmentation hotspots for noninvasive BLCA diagnosis, as well as for future translational study regarding its molecular pathology and heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dream完成签到 ,获得积分10
刚刚
唐唐发布了新的文献求助10
刚刚
史克珍香完成签到 ,获得积分10
6秒前
晓风完成签到,获得积分10
9秒前
CR完成签到 ,获得积分10
10秒前
mammer应助超帅无色采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
12秒前
lilylwy完成签到 ,获得积分0
12秒前
li完成签到 ,获得积分10
12秒前
可爱的函函应助唐唐采纳,获得10
17秒前
小石头完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
23秒前
xiaoxiaoxingchen完成签到 ,获得积分10
23秒前
laohu完成签到,获得积分10
24秒前
风格完成签到,获得积分10
24秒前
大橙子发布了新的文献求助150
26秒前
八点必起完成签到,获得积分10
27秒前
sduweiyu完成签到 ,获得积分10
28秒前
hyf完成签到 ,获得积分10
29秒前
aldehyde应助芊芊要发SCI采纳,获得10
30秒前
Twinkle完成签到,获得积分10
32秒前
Eureka完成签到,获得积分10
34秒前
38秒前
浮熙完成签到 ,获得积分10
45秒前
笔芯完成签到,获得积分10
48秒前
看文献完成签到,获得积分0
50秒前
爱与感谢完成签到 ,获得积分10
52秒前
华仔应助大橙子采纳,获得10
53秒前
小帅完成签到,获得积分10
53秒前
man完成签到 ,获得积分10
54秒前
biofresh完成签到,获得积分10
56秒前
平凡完成签到,获得积分10
1分钟前
1分钟前
哈利波特完成签到,获得积分10
1分钟前
菓小柒完成签到 ,获得积分10
1分钟前
basil完成签到,获得积分10
1分钟前
大橙子发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022