Machine Learning-Based Detection of Bladder Cancer by Urine cfDNA Fragmentation Hotspots that Capture Cancer-Associated Molecular Features

膀胱癌 液体活检 尿 医学 活检 肿瘤科 生物信息学 内科学 生物 癌症
作者
Xiangyu Meng,Xionghui Zhou,Shuo Li,Mingjun Shi,Xuanhao Li,Bo-Yu Yang,Min Liu,Kezhen Yi,Yunze Wang,Hongyu Zhang,Jian Song,Xinghuan Wang,Xinghuan Wang
出处
期刊:Clinical Chemistry [American Association for Clinical Chemistry]
被引量:5
标识
DOI:10.1093/clinchem/hvae156
摘要

Abstract Background cfDNA fragmentomics-based liquid biopsy is a potential option for noninvasive bladder cancer (BLCA) detection that remains an unmet clinical need. Methods We assessed the diagnostic performance of cfDNA hotspot-driven machine-learning models in a cohort of 55 BLCA patients, 51 subjects with benign conditions, and 11 healthy volunteers. We further performed functional bioinformatics analysis for biological understanding and interpretation of the tool’s diagnostic capability. Results Urinary cfDNA hotspots-based machine-learning model enabled effective BLCA detection, achieving high performance (area under curve 0.96) and an 87% sensitivity at 100% specificity. It outperformed models using other cfDNA-derived features. In stage-stratified analysis, the sensitivity at 100% specificity of the urine hotspots-based model was 71% and 92% for early (low-grade Ta and T1) and advanced (high-grade T1 and muscle-invasive) disease, respectively. Biologically, cfDNA hotspots effectively retrieved regulatory elements and were correlated with the cell of origin. Urine cfDNA hotspots specifically captured BLCA-related molecular features, including key functional pathways, chromosome loci associated with BLCA risk as identified in genome-wide association studies, or presenting frequent somatic alterations in BLCA tumors, and the transcription factor regulatory landscape. Conclusions Our findings support the applicability of urine cfDNA fragmentation hotspots for noninvasive BLCA diagnosis, as well as for future translational study regarding its molecular pathology and heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清欢完成签到 ,获得积分10
刚刚
科目二三次郎完成签到,获得积分10
刚刚
LFC发布了新的文献求助10
刚刚
Liana_Liu完成签到,获得积分10
1秒前
lay发布了新的文献求助10
1秒前
阿姨洗铁路完成签到 ,获得积分10
1秒前
搜集达人应助过过过采纳,获得10
1秒前
1秒前
QIAO完成签到,获得积分10
2秒前
2秒前
Ye发布了新的文献求助30
2秒前
AllRightReserved完成签到 ,获得积分10
3秒前
duo完成签到,获得积分10
4秒前
万能图书馆应助alexisgood采纳,获得30
4秒前
科研混子完成签到,获得积分10
4秒前
小蘑菇应助黎乐荷采纳,获得10
5秒前
快乐再出发完成签到,获得积分10
5秒前
5秒前
一枚小豆完成签到,获得积分10
5秒前
6秒前
zk001完成签到,获得积分20
6秒前
hongxian完成签到,获得积分10
6秒前
7秒前
小李完成签到,获得积分10
7秒前
落后谷兰完成签到,获得积分20
7秒前
栗子完成签到,获得积分10
7秒前
大兵哥发布了新的文献求助10
8秒前
大地完成签到,获得积分10
8秒前
豌豆尖完成签到,获得积分10
8秒前
8秒前
8秒前
务实的南露完成签到,获得积分10
9秒前
9秒前
???完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
dypdyp应助djbj2022采纳,获得10
10秒前
duzhi给duzhi的求助进行了留言
10秒前
斯文败类应助半文采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968934
求助须知:如何正确求助?哪些是违规求助? 3513835
关于积分的说明 11170238
捐赠科研通 3249167
什么是DOI,文献DOI怎么找? 1794650
邀请新用户注册赠送积分活动 875278
科研通“疑难数据库(出版商)”最低求助积分说明 804755