Machine Learning-Based Detection of Bladder Cancer by Urine cfDNA Fragmentation Hotspots that Capture Cancer-Associated Molecular Features

膀胱癌 液体活检 尿 医学 活检 肿瘤科 生物信息学 内科学 生物 癌症
作者
Xiangyu Meng,Xionghui Zhou,Shuo Li,Mingjun Shi,Xuanhao Li,Bo-Yu Yang,Lei Zhu,Kezhen Yi,Yunze Wang,Hongyu Zhang,Jian Song,Xinghuan Wang,Xinghuan Wang
出处
期刊:Clinical Chemistry [Oxford University Press]
标识
DOI:10.1093/clinchem/hvae156
摘要

Abstract Background cfDNA fragmentomics-based liquid biopsy is a potential option for noninvasive bladder cancer (BLCA) detection that remains an unmet clinical need. Methods We assessed the diagnostic performance of cfDNA hotspot-driven machine-learning models in a cohort of 55 BLCA patients, 51 subjects with benign conditions, and 11 healthy volunteers. We further performed functional bioinformatics analysis for biological understanding and interpretation of the tool’s diagnostic capability. Results Urinary cfDNA hotspots-based machine-learning model enabled effective BLCA detection, achieving high performance (area under curve 0.96) and an 87% sensitivity at 100% specificity. It outperformed models using other cfDNA-derived features. In stage-stratified analysis, the sensitivity at 100% specificity of the urine hotspots-based model was 71% and 92% for early (low-grade Ta and T1) and advanced (high-grade T1 and muscle-invasive) disease, respectively. Biologically, cfDNA hotspots effectively retrieved regulatory elements and were correlated with the cell of origin. Urine cfDNA hotspots specifically captured BLCA-related molecular features, including key functional pathways, chromosome loci associated with BLCA risk as identified in genome-wide association studies, or presenting frequent somatic alterations in BLCA tumors, and the transcription factor regulatory landscape. Conclusions Our findings support the applicability of urine cfDNA fragmentation hotspots for noninvasive BLCA diagnosis, as well as for future translational study regarding its molecular pathology and heterogeneity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jttqzh111完成签到 ,获得积分10
刚刚
岳粤完成签到,获得积分10
1秒前
1秒前
2秒前
miao发布了新的文献求助10
2秒前
zongzi12138完成签到,获得积分0
2秒前
科研通AI2S应助xzyin采纳,获得10
2秒前
3秒前
英姑应助未解的波采纳,获得10
3秒前
4秒前
小大巫完成签到,获得积分10
4秒前
4秒前
时尚的细菌完成签到,获得积分10
4秒前
yesiDo完成签到,获得积分10
5秒前
Aurora完成签到,获得积分10
5秒前
old关注了科研通微信公众号
5秒前
liuliu完成签到 ,获得积分10
6秒前
王易云发布了新的文献求助10
6秒前
cannon8完成签到,获得积分10
6秒前
脆瓜完成签到,获得积分10
6秒前
hhh完成签到,获得积分10
7秒前
糖糖糖唐发布了新的文献求助10
7秒前
8秒前
甜美羞花完成签到,获得积分10
8秒前
HongJiang完成签到,获得积分10
8秒前
香蕉觅云应助DrLuffy采纳,获得10
8秒前
等待完成签到,获得积分10
8秒前
Xx发布了新的文献求助10
9秒前
南巷完成签到,获得积分10
9秒前
十一完成签到,获得积分10
9秒前
10秒前
小马宝莉完成签到,获得积分10
10秒前
晓伟完成签到,获得积分10
11秒前
12秒前
大个应助林山相晚暮采纳,获得10
12秒前
tracy完成签到,获得积分10
12秒前
12秒前
jasmine完成签到,获得积分10
12秒前
久而久之完成签到 ,获得积分10
12秒前
十一发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 500
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3104211
求助须知:如何正确求助?哪些是违规求助? 2755498
关于积分的说明 7633314
捐赠科研通 2408986
什么是DOI,文献DOI怎么找? 1278114
科研通“疑难数据库(出版商)”最低求助积分说明 617284
版权声明 599207