Revolution or risk?—Assessing the potential and challenges of GPT-4V in radiologic image interpretation

医学诊断 医学 背景(考古学) 神经组阅片室 放射科 医学物理学 医学影像学 射线照相术 诊断准确性 模式 神经学 精神科 古生物学 社会科学 社会学 生物
作者
Marc Huppertz,Robert Siepmann,David Topp,Omid Nikoubashman,Can Yüksel,Christiane Kühl,Daniel Truhn,Sven Nebelung
出处
期刊:European Radiology [Springer Nature]
标识
DOI:10.1007/s00330-024-11115-6
摘要

Abstract Objectives ChatGPT-4 Vision (GPT-4V) is a state-of-the-art multimodal large language model (LLM) that may be queried using images. We aimed to evaluate the tool’s diagnostic performance when autonomously assessing clinical imaging studies. Materials and methods A total of 206 imaging studies (i.e., radiography ( n = 60), CT ( n = 60), MRI ( n = 60), and angiography ( n = 26)) with unequivocal findings and established reference diagnoses from the radiologic practice of a large university hospital were accessed. Readings were performed uncontextualized, with only the image provided, and contextualized, with additional clinical and demographic information. Responses were assessed along multiple diagnostic dimensions and analyzed using appropriate statistical tests. Results With its pronounced propensity to favor context over image information, the tool’s diagnostic accuracy improved from 8.3% (uncontextualized) to 29.1% (contextualized, first diagnosis correct) and 63.6% (contextualized, correct diagnosis among differential diagnoses) ( p ≤ 0.001, Cochran’s Q test). Diagnostic accuracy declined by up to 30% when 20 images were re-read after 30 and 90 days and seemed unrelated to the tool’s self-reported confidence (Spearman’s ρ = 0.117 ( p = 0.776)). While the described imaging findings matched the suggested diagnoses in 92.7%, indicating valid diagnostic reasoning, the tool fabricated 258 imaging findings in 412 responses and misidentified imaging modalities or anatomic regions in 65 images. Conclusion GPT-4V, in its current form, cannot reliably interpret radiologic images. Its tendency to disregard the image, fabricate findings, and misidentify details, especially without clinical context, may misguide healthcare providers and put patients at risk. Key Points Question Can Generative Pre-trained Transformer 4 Vision (GPT-4V) interpret radiologic images—with and without clinical context? Findings GPT-4V performed poorly, demonstrating diagnostic accuracy rates of 8% (uncontextualized), 29% (contextualized, most likely diagnosis correct), and 64% (contextualized, correct diagnosis among differential diagnoses). Clinical relevance The utility of commercial multimodal large language models, such as GPT-4V, in radiologic practice is limited. Without clinical context, diagnostic errors and fabricated findings may compromise patient safety and misguide clinical decision-making. These models must be further refined to be beneficial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜完成签到,获得积分10
刚刚
youran完成签到,获得积分20
1秒前
sjdove完成签到,获得积分10
1秒前
华仔应助王瑜采纳,获得10
2秒前
lsjdsdb发布了新的文献求助10
2秒前
科研通AI2S应助Yu采纳,获得10
2秒前
青尘枫叶发布了新的文献求助10
2秒前
3秒前
3秒前
李健应助一只小鲨鱼采纳,获得10
4秒前
什么李完成签到,获得积分10
4秒前
独特斩发布了新的文献求助10
5秒前
lc339完成签到,获得积分10
5秒前
大模型应助害羞的若颜采纳,获得10
5秒前
兴奋大开发布了新的文献求助10
6秒前
小悦悦完成签到 ,获得积分10
7秒前
一个呼呼完成签到,获得积分10
7秒前
7秒前
鲤鱼鸽子应助sekidesu采纳,获得10
8秒前
陶醉完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
壮观的夏蓉完成签到,获得积分10
11秒前
能干冰岚完成签到,获得积分10
12秒前
幻梦发布了新的文献求助30
12秒前
13秒前
13秒前
兴奋大开完成签到,获得积分10
13秒前
Chillym发布了新的文献求助10
14秒前
宝宝来也完成签到,获得积分10
14秒前
14秒前
冷静诗蕊完成签到,获得积分10
14秒前
脑洞疼应助czb采纳,获得10
14秒前
14秒前
凌霄发布了新的文献求助10
15秒前
Ali应助小药师采纳,获得10
15秒前
陈zv完成签到,获得积分10
15秒前
16秒前
Owen应助66采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397