AI-Based Anomaly Detection for Clinical-Grade Histopathological Diagnostics

异常检测 异常(物理) 人工智能 医学 模式识别(心理学) 计算机科学 物理 凝聚态物理
作者
Jonas Dippel,Niklas Prenißl,Julius Hense,Philipp Liznerski,Tobias Winterhoff,Simon Schallenberg,Marius Kloft,Oliver Buchstab,David Horst,Maximilian Alber,Lukas Ruff,Klaus-Robert Müller,Frederick Klauschen
标识
DOI:10.1056/aioa2400468
摘要

BackgroundWhile previous studies of artificial intelligence (AI) have shown its potential for diagnosing diseases using imaging data, clinical implementation lags behind. AI models require training with large numbers of examples, which are only available for common diseases. In clinical reality, however, the majority of diseases are less frequent, and current AI models overlook or misclassify them. An effective, comprehensive technique is needed for the full spectrum of real-world diagnoses.MethodsWe collected two large real-world datasets of gastrointestinal (GI) biopsies, which are prototypical of the problem. Herein, the 10 most common findings accounted for approximately 90% of cases, whereas the remaining 10% contained 56 disease entities, including many cancers. Seventeen million histological images from 5423 cases were used for training and evaluation. We propose a deep anomaly detection (AD) approach that only requires training data from common diseases to also detect all less frequent diseases.ResultsWithout specific training for the diseases, our best-performing model reliably detected a broad spectrum of infrequent ("anomalous") pathologies with 95.0% (stomach) and 91.0% (colon) area under the receiver operating characteristic curve (AUROC) and was able to generalize between scanners and hospitals. Cancers were detected with 97.7% (stomach) and 96.9% (colon) AUROC. Heatmaps reliably highlighted anomalous areas and can guide pathologists during the diagnostic process.ConclusionsIn this study, we establish the first effective clinical application of AI-based AD in histopathology and demonstrate high performance on a unique real-world collection of GI biopsies. The proposed novel AD can flag anomalous cases, facilitate case prioritization, and reduce missed diagnoses, providing critical support for pathologists. By design, it can be expected to detect any pathological alteration including rare primary or metastatic cancers in GI biopsies. To our knowledge, no other published AI tool is capable of zero-shot pan-cancer detection. AD may enhance the safety of AI models in histopathology, thereby driving AI adoption and automation in routine diagnostics and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十二发布了新的文献求助10
刚刚
请不要挂机完成签到,获得积分10
刚刚
柔弱的尔白完成签到,获得积分10
1秒前
超级如风完成签到,获得积分10
1秒前
dengbing2000完成签到,获得积分10
1秒前
宇宙的中心完成签到,获得积分10
2秒前
Mikey_Teng完成签到,获得积分10
2秒前
冯晓潮完成签到 ,获得积分10
2秒前
啾一口香菜完成签到 ,获得积分10
2秒前
张子陌完成签到 ,获得积分20
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
南巷酒肆完成签到,获得积分10
3秒前
大方的荟完成签到,获得积分10
3秒前
Hello应助孤独的心锁采纳,获得10
3秒前
科研通AI5应助LF-Scie采纳,获得200
3秒前
3秒前
4秒前
xinc完成签到,获得积分10
4秒前
Mikey_Teng发布了新的文献求助10
4秒前
RJ123456完成签到,获得积分10
4秒前
斯文败类应助彩色立辉采纳,获得10
4秒前
5秒前
Eureka完成签到 ,获得积分10
5秒前
ZIVON完成签到,获得积分10
5秒前
5秒前
5秒前
斯文败类应助幸福五采纳,获得10
5秒前
幻影发布了新的文献求助10
5秒前
5秒前
bob完成签到,获得积分10
5秒前
科研通AI5应助TN采纳,获得10
5秒前
李清杰发布了新的文献求助10
5秒前
lj完成签到,获得积分10
5秒前
6秒前
啦啦啦完成签到,获得积分20
6秒前
天真的雨完成签到,获得积分10
6秒前
7秒前
lcy完成签到,获得积分10
7秒前
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5150811
求助须知:如何正确求助?哪些是违规求助? 4346573
关于积分的说明 13533545
捐赠科研通 4189288
什么是DOI,文献DOI怎么找? 2297425
邀请新用户注册赠送积分活动 1297790
关于科研通互助平台的介绍 1242353