AI-Based Anomaly Detection for Clinical-Grade Histopathological Diagnostics

异常检测 异常(物理) 人工智能 医学 模式识别(心理学) 计算机科学 物理 凝聚态物理
作者
Jonas Dippel,Niklas Prenißl,Julius Hense,Philipp Liznerski,Tobias Winterhoff,Simon Schallenberg,Marius Kloft,Oliver Buchstab,David Horst,Maximilian Alber,Lukas Ruff,Klaus‐Robert Mueller,Frederick Klauschen
标识
DOI:10.1056/aioa2400468
摘要

BackgroundWhile previous studies of artificial intelligence (AI) have shown its potential for diagnosing diseases using imaging data, clinical implementation lags behind. AI models require training with large numbers of examples, which are only available for common diseases. In clinical reality, however, the majority of diseases are less frequent, and current AI models overlook or misclassify them. An effective, comprehensive technique is needed for the full spectrum of real-world diagnoses.MethodsWe collected two large real-world datasets of gastrointestinal (GI) biopsies, which are prototypical of the problem. Herein, the 10 most common findings accounted for approximately 90% of cases, whereas the remaining 10% contained 56 disease entities, including many cancers. Seventeen million histological images from 5423 cases were used for training and evaluation. We propose a deep anomaly detection (AD) approach that only requires training data from common diseases to also detect all less frequent diseases.ResultsWithout specific training for the diseases, our best-performing model reliably detected a broad spectrum of infrequent ("anomalous") pathologies with 95.0% (stomach) and 91.0% (colon) area under the receiver operating characteristic curve (AUROC) and was able to generalize between scanners and hospitals. Cancers were detected with 97.7% (stomach) and 96.9% (colon) AUROC. Heatmaps reliably highlighted anomalous areas and can guide pathologists during the diagnostic process.ConclusionsIn this study, we establish the first effective clinical application of AI-based AD in histopathology and demonstrate high performance on a unique real-world collection of GI biopsies. The proposed novel AD can flag anomalous cases, facilitate case prioritization, and reduce missed diagnoses, providing critical support for pathologists. By design, it can be expected to detect any pathological alteration including rare primary or metastatic cancers in GI biopsies. To our knowledge, no other published AI tool is capable of zero-shot pan-cancer detection. AD may enhance the safety of AI models in histopathology, thereby driving AI adoption and automation in routine diagnostics and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文艺奇迹完成签到,获得积分20
刚刚
1秒前
大个应助czy采纳,获得10
1秒前
2秒前
陈小白发布了新的文献求助10
2秒前
SciGPT应助符聪采纳,获得10
2秒前
苏苏发布了新的文献求助10
2秒前
王菲发布了新的文献求助10
2秒前
3秒前
3秒前
黎洛洛发布了新的文献求助10
3秒前
3秒前
超级李包包完成签到,获得积分10
3秒前
认真映真完成签到,获得积分10
5秒前
bobecust发布了新的文献求助10
6秒前
大胆笑翠完成签到,获得积分10
6秒前
6秒前
6秒前
iMoney发布了新的文献求助10
7秒前
一个小短发完成签到 ,获得积分10
7秒前
让我毕业发布了新的文献求助30
7秒前
打滚完成签到,获得积分10
8秒前
9秒前
9秒前
归尘发布了新的文献求助10
10秒前
搜集达人应助YY采纳,获得10
11秒前
李健应助AAACharlie采纳,获得10
13秒前
莫北完成签到,获得积分10
13秒前
奶油布丁发布了新的文献求助10
14秒前
LYM完成签到,获得积分10
15秒前
16秒前
17秒前
19秒前
大模型应助洪婉馨采纳,获得10
19秒前
wpy完成签到,获得积分10
19秒前
anli关注了科研通微信公众号
19秒前
20秒前
明亮不乐完成签到,获得积分20
20秒前
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344