亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-Based Anomaly Detection for Clinical-Grade Histopathological Diagnostics

异常检测 异常(物理) 人工智能 医学 模式识别(心理学) 计算机科学 物理 凝聚态物理
作者
Jonas Dippel,Niklas Prenißl,Julius Hense,Philipp Liznerski,Tobias Winterhoff,Simon Schallenberg,Marius Kloft,Oliver Buchstab,David Horst,Maximilian Alber,Lukas Ruff,Klaus‐Robert Mueller,Frederick Klauschen
标识
DOI:10.1056/aioa2400468
摘要

BackgroundWhile previous studies of artificial intelligence (AI) have shown its potential for diagnosing diseases using imaging data, clinical implementation lags behind. AI models require training with large numbers of examples, which are only available for common diseases. In clinical reality, however, the majority of diseases are less frequent, and current AI models overlook or misclassify them. An effective, comprehensive technique is needed for the full spectrum of real-world diagnoses.MethodsWe collected two large real-world datasets of gastrointestinal (GI) biopsies, which are prototypical of the problem. Herein, the 10 most common findings accounted for approximately 90% of cases, whereas the remaining 10% contained 56 disease entities, including many cancers. Seventeen million histological images from 5423 cases were used for training and evaluation. We propose a deep anomaly detection (AD) approach that only requires training data from common diseases to also detect all less frequent diseases.ResultsWithout specific training for the diseases, our best-performing model reliably detected a broad spectrum of infrequent ("anomalous") pathologies with 95.0% (stomach) and 91.0% (colon) area under the receiver operating characteristic curve (AUROC) and was able to generalize between scanners and hospitals. Cancers were detected with 97.7% (stomach) and 96.9% (colon) AUROC. Heatmaps reliably highlighted anomalous areas and can guide pathologists during the diagnostic process.ConclusionsIn this study, we establish the first effective clinical application of AI-based AD in histopathology and demonstrate high performance on a unique real-world collection of GI biopsies. The proposed novel AD can flag anomalous cases, facilitate case prioritization, and reduce missed diagnoses, providing critical support for pathologists. By design, it can be expected to detect any pathological alteration including rare primary or metastatic cancers in GI biopsies. To our knowledge, no other published AI tool is capable of zero-shot pan-cancer detection. AD may enhance the safety of AI models in histopathology, thereby driving AI adoption and automation in routine diagnostics and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助einspringen采纳,获得10
18秒前
华仔应助是你的雨采纳,获得10
19秒前
26秒前
einspringen发布了新的文献求助10
31秒前
44秒前
Ryu发布了新的文献求助10
49秒前
bastien完成签到,获得积分10
1分钟前
白芷当归完成签到,获得积分10
1分钟前
beihaik完成签到 ,获得积分0
1分钟前
1分钟前
MchemG完成签到,获得积分0
1分钟前
是你的雨发布了新的文献求助10
1分钟前
2分钟前
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
Sylvia卉完成签到,获得积分10
3分钟前
是你的雨完成签到,获得积分10
3分钟前
physicalproblem完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助20
3分钟前
3分钟前
VVV完成签到,获得积分10
3分钟前
VVV发布了新的文献求助10
3分钟前
是你的雨发布了新的文献求助10
3分钟前
Mercury完成签到,获得积分10
4分钟前
4分钟前
犹豫幻丝完成签到,获得积分10
4分钟前
dong发布了新的文献求助10
4分钟前
席江海完成签到,获得积分0
5分钟前
6分钟前
6分钟前
科研通AI5应助东京芝士123采纳,获得30
6分钟前
Criminology34发布了新的文献求助50
6分钟前
7分钟前
Ryu发布了新的文献求助10
7分钟前
7分钟前
无糖发布了新的文献求助10
7分钟前
小马甲应助无糖采纳,获得10
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4984087
求助须知:如何正确求助?哪些是违规求助? 4235079
关于积分的说明 13189682
捐赠科研通 4027591
什么是DOI,文献DOI怎么找? 2203336
邀请新用户注册赠送积分活动 1215509
关于科研通互助平台的介绍 1132771