AI-Based Anomaly Detection for Clinical-Grade Histopathological Diagnostics

异常检测 异常(物理) 人工智能 医学 模式识别(心理学) 计算机科学 物理 凝聚态物理
作者
Jonas Dippel,Niklas Prenißl,Julius Hense,Philipp Liznerski,Tobias Winterhoff,Simon Schallenberg,Marius Kloft,Oliver Buchstab,David Horst,Maximilian Alber,Lukas Ruff,Klaus‐Robert Mueller,Frederick Klauschen
标识
DOI:10.1056/aioa2400468
摘要

BackgroundWhile previous studies of artificial intelligence (AI) have shown its potential for diagnosing diseases using imaging data, clinical implementation lags behind. AI models require training with large numbers of examples, which are only available for common diseases. In clinical reality, however, the majority of diseases are less frequent, and current AI models overlook or misclassify them. An effective, comprehensive technique is needed for the full spectrum of real-world diagnoses.MethodsWe collected two large real-world datasets of gastrointestinal (GI) biopsies, which are prototypical of the problem. Herein, the 10 most common findings accounted for approximately 90% of cases, whereas the remaining 10% contained 56 disease entities, including many cancers. Seventeen million histological images from 5423 cases were used for training and evaluation. We propose a deep anomaly detection (AD) approach that only requires training data from common diseases to also detect all less frequent diseases.ResultsWithout specific training for the diseases, our best-performing model reliably detected a broad spectrum of infrequent ("anomalous") pathologies with 95.0% (stomach) and 91.0% (colon) area under the receiver operating characteristic curve (AUROC) and was able to generalize between scanners and hospitals. Cancers were detected with 97.7% (stomach) and 96.9% (colon) AUROC. Heatmaps reliably highlighted anomalous areas and can guide pathologists during the diagnostic process.ConclusionsIn this study, we establish the first effective clinical application of AI-based AD in histopathology and demonstrate high performance on a unique real-world collection of GI biopsies. The proposed novel AD can flag anomalous cases, facilitate case prioritization, and reduce missed diagnoses, providing critical support for pathologists. By design, it can be expected to detect any pathological alteration including rare primary or metastatic cancers in GI biopsies. To our knowledge, no other published AI tool is capable of zero-shot pan-cancer detection. AD may enhance the safety of AI models in histopathology, thereby driving AI adoption and automation in routine diagnostics and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的绮南完成签到,获得积分10
1秒前
和谐的映梦完成签到,获得积分10
4秒前
聪明梦容发布了新的文献求助20
4秒前
烟花应助Eyring_go采纳,获得10
5秒前
Hongni发布了新的文献求助10
5秒前
6秒前
6秒前
科目三应助醋醋采纳,获得10
6秒前
8秒前
万能图书馆应助VitaminK采纳,获得10
8秒前
杨嘉琪完成签到 ,获得积分10
8秒前
思源应助key采纳,获得10
9秒前
酷酷的涵蕾完成签到 ,获得积分10
10秒前
桂花酒酿完成签到,获得积分10
10秒前
852应助木榕城采纳,获得10
11秒前
11秒前
win完成签到,获得积分10
11秒前
酷炫小伙发布了新的文献求助10
12秒前
12秒前
liberty发布了新的文献求助10
13秒前
doubleshake发布了新的文献求助10
13秒前
Teanka完成签到,获得积分10
13秒前
13秒前
隐形曼青应助少时4EVA采纳,获得10
15秒前
16秒前
明理十三发布了新的文献求助10
16秒前
未来院士发布了新的文献求助10
16秒前
文静丹寒完成签到,获得积分10
16秒前
耍酷以柳发布了新的文献求助10
16秒前
Aspirin完成签到 ,获得积分10
17秒前
18秒前
kelezhu给kelezhu的求助进行了留言
18秒前
lulu完成签到,获得积分20
18秒前
CipherSage应助03采纳,获得10
19秒前
19秒前
20秒前
明理十三完成签到,获得积分10
22秒前
无尘发布了新的文献求助10
23秒前
踏实天空发布了新的文献求助50
23秒前
key发布了新的文献求助10
23秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129513
求助须知:如何正确求助?哪些是违规求助? 2780318
关于积分的说明 7747496
捐赠科研通 2435637
什么是DOI,文献DOI怎么找? 1294181
科研通“疑难数据库(出版商)”最低求助积分说明 623590
版权声明 600570