亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-Based Anomaly Detection for Clinical-Grade Histopathological Diagnostics

异常检测 异常(物理) 人工智能 医学 模式识别(心理学) 计算机科学 物理 凝聚态物理
作者
Jonas Dippel,Niklas Prenißl,Julius Hense,Philipp Liznerski,Tobias Winterhoff,Simon Schallenberg,Marius Kloft,Oliver Buchstab,David Horst,Maximilian Alber,Lukas Ruff,Klaus-Robert Müller,Frederick Klauschen
标识
DOI:10.1056/aioa2400468
摘要

BackgroundWhile previous studies of artificial intelligence (AI) have shown its potential for diagnosing diseases using imaging data, clinical implementation lags behind. AI models require training with large numbers of examples, which are only available for common diseases. In clinical reality, however, the majority of diseases are less frequent, and current AI models overlook or misclassify them. An effective, comprehensive technique is needed for the full spectrum of real-world diagnoses.MethodsWe collected two large real-world datasets of gastrointestinal (GI) biopsies, which are prototypical of the problem. Herein, the 10 most common findings accounted for approximately 90% of cases, whereas the remaining 10% contained 56 disease entities, including many cancers. Seventeen million histological images from 5423 cases were used for training and evaluation. We propose a deep anomaly detection (AD) approach that only requires training data from common diseases to also detect all less frequent diseases.ResultsWithout specific training for the diseases, our best-performing model reliably detected a broad spectrum of infrequent ("anomalous") pathologies with 95.0% (stomach) and 91.0% (colon) area under the receiver operating characteristic curve (AUROC) and was able to generalize between scanners and hospitals. Cancers were detected with 97.7% (stomach) and 96.9% (colon) AUROC. Heatmaps reliably highlighted anomalous areas and can guide pathologists during the diagnostic process.ConclusionsIn this study, we establish the first effective clinical application of AI-based AD in histopathology and demonstrate high performance on a unique real-world collection of GI biopsies. The proposed novel AD can flag anomalous cases, facilitate case prioritization, and reduce missed diagnoses, providing critical support for pathologists. By design, it can be expected to detect any pathological alteration including rare primary or metastatic cancers in GI biopsies. To our knowledge, no other published AI tool is capable of zero-shot pan-cancer detection. AD may enhance the safety of AI models in histopathology, thereby driving AI adoption and automation in routine diagnostics and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
_ban发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
violet完成签到 ,获得积分10
2分钟前
jason完成签到,获得积分0
4分钟前
zhao完成签到 ,获得积分0
4分钟前
席江海完成签到,获得积分0
5分钟前
kuoping完成签到,获得积分0
6分钟前
Kamalika发布了新的文献求助200
6分钟前
orixero应助张艺雯采纳,获得10
6分钟前
6分钟前
张艺雯发布了新的文献求助10
6分钟前
张艺雯完成签到,获得积分20
7分钟前
LU应助科研通管家采纳,获得10
7分钟前
ttimmy完成签到,获得积分10
8分钟前
科研通AI6应助与水皆水采纳,获得10
9分钟前
Kamalika完成签到,获得积分10
9分钟前
傻瓜完成签到 ,获得积分10
9分钟前
9分钟前
_ban完成签到 ,获得积分10
10分钟前
10分钟前
neimy完成签到,获得积分20
10分钟前
neimy发布了新的文献求助30
10分钟前
yc完成签到 ,获得积分10
10分钟前
与水皆水发布了新的文献求助10
11分钟前
领导范儿应助张艺雯采纳,获得10
11分钟前
11分钟前
11分钟前
张艺雯发布了新的文献求助10
11分钟前
夏鹿完成签到,获得积分10
12分钟前
小夜子完成签到 ,获得积分10
12分钟前
12分钟前
LP829发布了新的文献求助10
12分钟前
13分钟前
Rebeccaiscute完成签到 ,获得积分10
13分钟前
14分钟前
LP829发布了新的文献求助10
15分钟前
15分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5233351
求助须知:如何正确求助?哪些是违规求助? 4402320
关于积分的说明 13699874
捐赠科研通 4269040
什么是DOI,文献DOI怎么找? 2342892
邀请新用户注册赠送积分活动 1339929
关于科研通互助平台的介绍 1296893