S2P-Matching: Self-supervised Patch-based Matching Using Transformer for Capsule Endoscopic Images Stitching

图像拼接 人工智能 变压器 计算机视觉 匹配(统计) 计算机科学 模板匹配 模式识别(心理学) 胶囊 工程类 图像(数学) 医学 电气工程 电压 地质学 病理 古生物学
作者
Feng Lü,Dao Zhou,Haoyang Chen,Shuai Liu,Xianliang Ling,Lei Zhu,Tingting Gong,Bin Sheng,Xiaofei Liao,Hai Jin,Ping Li,Dagan Feng
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tbme.2024.3462502
摘要

The Magnetically Controlled Capsule Endoscopy (MCCE) has a limited shooting range, resulting in capturing numerous fragmented images and an inability to precisely locate and examine the region of interest (ROI) as traditional endoscopy can. Addressing this issue, image stitching around the ROI can be employed to aid in the diagnosis of gastrointestinal (GI) tract conditions. However, MCCE images possess unique characteristics, such as weak texture, close-up shooting, and large angle rotation, presenting challenges to current image-matching methods. In this context, a method named S2P-Matching is proposed for self-supervised patch-based matching in MCCE image stitching. The method involves augmenting the raw data by simulating the capsule endoscopic camera's behavior around the GI tract's ROI. Subsequently, an improved contrast learning encoder is utilized to extract local features, represented as deep feature descriptors. This encoder comprises two branches that extract distinct scale features, which are combined over the channel without manual labeling. The data-driven descriptors are then input into a Transformer model to obtain patch-level matches by learning the globally consented matching priors in the pseudo-ground-truth match pairs. Finally, the patch-level matching is refined and filtered to the pixel-level. The experimental results on real-world MCCE images demonstrate that S2P-Matching provides enhanced accuracy in addressing challenging issues in the GI tract environment with image parallax. The performance improvement can reach up to 203 and 55.8% in terms of NCM (Number of Correct Matches) and SR (Success Rate), respectively. This approach is expected to facilitate the wide adoption of MCCE-based gastrointestinal screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助狂野谷冬采纳,获得10
刚刚
顾矜应助411采纳,获得10
刚刚
NexusExplorer应助天玄一刀采纳,获得30
1秒前
852应助拼搏语薇采纳,获得10
1秒前
Bao发布了新的文献求助10
1秒前
情怀应助ryan采纳,获得10
1秒前
ll发布了新的文献求助10
4秒前
4秒前
胡桃夹子发布了新的文献求助10
5秒前
ZL完成签到,获得积分10
8秒前
嗯好22222发布了新的文献求助30
8秒前
8秒前
嘟嘟完成签到,获得积分10
9秒前
皇后加哦加哦加哦完成签到,获得积分10
9秒前
12秒前
13秒前
15秒前
拼搏语薇发布了新的文献求助10
16秒前
stardust完成签到,获得积分10
16秒前
Jokic完成签到,获得积分0
17秒前
瞿亭龙完成签到,获得积分10
17秒前
JimmyFun完成签到,获得积分20
18秒前
19秒前
波粒二象性完成签到,获得积分10
19秒前
zz发布了新的文献求助10
20秒前
凌飞关注了科研通微信公众号
20秒前
玛卡巴子完成签到,获得积分10
20秒前
JJ发布了新的文献求助10
22秒前
24秒前
li完成签到,获得积分10
26秒前
白鸽完成签到,获得积分10
26秒前
26秒前
zinc发布了新的文献求助10
27秒前
27秒前
www完成签到 ,获得积分10
28秒前
狂野谷冬发布了新的文献求助10
28秒前
30秒前
hh完成签到,获得积分10
31秒前
32秒前
拼搏语薇完成签到,获得积分10
32秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464525
求助须知:如何正确求助?哪些是违规求助? 3057942
关于积分的说明 9059097
捐赠科研通 2748071
什么是DOI,文献DOI怎么找? 1507718
科研通“疑难数据库(出版商)”最低求助积分说明 696632
邀请新用户注册赠送积分活动 696290