Plasma Metabolomics Identifies Key Metabolites and Improves Prediction of Diabetic Retinopathy

医学 代谢组学 糖尿病性视网膜病变 钥匙(锁) 内科学 视网膜病变 代谢物 糖尿病 计算生物学 生物信息学 内分泌学 计算机科学 生物 计算机安全
作者
Shaopeng Yang,Riqian Liu,Zhuoyao Xin,Ziyu Zhu,Jiaqing Chu,Pingting Zhong,Zhuoting Zhu,Xianwen Shang,Wenyong Huang,Lei Zhang,Mingguang He,Wei Wang
出处
期刊:Ophthalmology [Elsevier]
卷期号:131 (12): 1436-1446 被引量:1
标识
DOI:10.1016/j.ophtha.2024.07.004
摘要

Purpose To identify longitudinal metabolomic fingerprints of diabetic retinopathy (DR) and evaluate their utility in predicting DR development and progression. Design Multicenter, multi-ethnic cohort study. Participants This study included 17,675 participants with baseline pre-diabetes/diabetes, in accordance with the 2021 American Diabetes Association guideline, and free of baseline DR from the UK Biobank (UKB); and an additional 638 diabetic participants from the Guangzhou Diabetic Eye Study (GDES) for external validation. Methods Longitudinal DR metabolomic fingerprints were identified through nuclear magnetic resonance assay in UKB participants. The predictive value of these fingerprints for predicting DR development were assessed in a fully withheld test set. External validation and extrapolation analyses of DR progression and microvascular damage were conducted in the GDES cohort. Model assessments included the C-statistic, net classification improvement (NRI), integrated discrimination improvement (IDI), calibration, and clinical utility in both cohorts. Main Outcome Measures DR development, progression, and retinal microvascular damage. Results Of 168 metabolites, 118 were identified as candidate metabolomic fingerprints for future DR development. These fingerprints significantly improved the predictability for DR development beyond traditional indicators (C-statistic: 0.802, 95% CI, 0.760–0.843 vs. 0.751, 95% CI, 0.706–0.796; P = 5.56×10−4). Glucose, lactate, and citrate were among the fingerprints validated in the GDES cohort. Using these parsimonious and replicable fingerprints yielded similar improvements for predicting DR development (C-statistic: 0.807, 95% CI, 0.711–0.903 vs. 0.617, 95% CI, 0.494, 0.740; P = 1.68×10−4) and progression (C-statistic: 0.797, 95% CI, 0.712–0.882 vs. 0.665, 95% CI, 0.545–0.784; P = 0.003) in the external cohort. Improvements in NRIs, IDIs, and clinical utility were also evident in both cohorts (all P <0.05). In addition, lactate and citrate were associated to microvascular damage across macular and optic disc regions (all P <0.05). Conclusions Metabolomic profiling has proven effective in identifying robust fingerprints for predicting future DR development and progression, providing novel insights into the early and advanced stages of DR pathophysiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LMNjkn发布了新的文献求助10
刚刚
xiao发布了新的文献求助10
刚刚
ww发布了新的文献求助10
刚刚
1秒前
Olsters发布了新的文献求助10
1秒前
深情安青应助该睡觉啦采纳,获得10
1秒前
1秒前
SEV完成签到,获得积分20
1秒前
愉快迎荷完成签到,获得积分10
2秒前
矮小的聪展完成签到,获得积分10
3秒前
factor完成签到,获得积分10
3秒前
Hello应助李来仪采纳,获得10
4秒前
SEV发布了新的文献求助10
4秒前
4秒前
4秒前
坚强亦丝应助隐形机器猫采纳,获得10
5秒前
小马甲应助SCI采纳,获得10
6秒前
老疯智发布了新的文献求助10
6秒前
sweetbearm应助通~采纳,获得10
6秒前
神凰完成签到,获得积分10
6秒前
Z小姐发布了新的文献求助10
7秒前
NexusExplorer应助白泽采纳,获得10
7秒前
8秒前
8秒前
火星上妙梦完成签到 ,获得积分10
8秒前
赘婿应助mayungui采纳,获得10
8秒前
贾不可发布了新的文献求助10
9秒前
英俊梦槐发布了新的文献求助30
9秒前
Xu完成签到,获得积分10
10秒前
10秒前
秀丽千山完成签到,获得积分10
10秒前
11秒前
12秒前
哈哈哈哈完成签到,获得积分10
12秒前
沧海泪发布了新的文献求助10
13秒前
小胡先森应助凤凰山采纳,获得10
13秒前
一一完成签到,获得积分10
13秒前
惠惠发布了新的文献求助10
13秒前
shotgod完成签到,获得积分20
14秒前
科研通AI5应助蕾子采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794