Plasma metabolomics identifies key metabolites and improves prediction of diabetic retinopathy: development and validation across multi-national cohorts

医学 代谢组学 队列 糖尿病性视网膜病变 内科学 队列研究 生命银行 糖尿病 生物信息学 内分泌学 生物
作者
Shaopeng Yang,Riqian Liu,Zhuoyao Xin,Ziyu Zhu,Jingxin Chu,Pingting Zhong,Zhuoting Zhu,Xianwen Shang,Wenyong Huang,Lei Zhang,Mingguang He,Wei Wang
出处
期刊:Ophthalmology [Elsevier]
标识
DOI:10.1016/j.ophtha.2024.07.004
摘要

Purpose To identify longitudinal metabolomic fingerprints of diabetic retinopathy (DR) and evaluate their utility in predicting DR development and progression. Design Multicenter, multi-ethnic cohort study. Participants This study included 17,675 participants with baseline pre-diabetes/diabetes, in accordance with the 2021 American Diabetes Association guideline, and free of baseline DR from the UK Biobank (UKB); and an additional 638 diabetic participants from the Guangzhou Diabetic Eye Study (GDES) for external validation. Methods Longitudinal DR metabolomic fingerprints were identified through nuclear magnetic resonance assay in UKB participants. The predictive value of these fingerprints for predicting DR development were assessed in a fully withheld test set. External validation and extrapolation analyses of DR progression and microvascular damage were conducted in the GDES cohort. Model assessments included the C-statistic, net classification improvement (NRI), integrated discrimination improvement (IDI), calibration, and clinical utility in both cohorts. Main Outcome Measures DR development, progression, and retinal microvascular damage. Results Of 168 metabolites, 118 were identified as candidate metabolomic fingerprints for future DR development. These fingerprints significantly improved the predictability for DR development beyond traditional indicators (C-statistic: 0.802, 95% CI, 0.760–0.843 vs. 0.751, 95% CI, 0.706–0.796; P = 5.56×10−4). Glucose, lactate, and citrate were among the fingerprints validated in the GDES cohort. Using these parsimonious and replicable fingerprints yielded similar improvements for predicting DR development (C-statistic: 0.807, 95% CI, 0.711–0.903 vs. 0.617, 95% CI, 0.494, 0.740; P = 1.68×10−4) and progression (C-statistic: 0.797, 95% CI, 0.712–0.882 vs. 0.665, 95% CI, 0.545–0.784; P = 0.003) in the external cohort. Improvements in NRIs, IDIs, and clinical utility were also evident in both cohorts (all P <0.05). In addition, lactate and citrate were associated to microvascular damage across macular and optic disc regions (all P <0.05). Conclusions Metabolomic profiling has proven effective in identifying robust fingerprints for predicting future DR development and progression, providing novel insights into the early and advanced stages of DR pathophysiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zbg完成签到 ,获得积分10
刚刚
1秒前
阳光傲菡完成签到 ,获得积分10
1秒前
2秒前
我是老大应助早睡早起采纳,获得10
2秒前
害羞外套发布了新的文献求助10
3秒前
TANG完成签到,获得积分10
3秒前
4秒前
研友_xnEOX8完成签到,获得积分10
5秒前
风的季节完成签到,获得积分0
6秒前
奋斗的妙海完成签到 ,获得积分0
6秒前
小彭爱科研完成签到,获得积分20
6秒前
6秒前
乐生完成签到,获得积分10
6秒前
博弈春秋发布了新的文献求助10
7秒前
zhukun完成签到,获得积分10
8秒前
唐政清完成签到,获得积分10
8秒前
满意的迎南完成签到,获得积分10
10秒前
10秒前
SciGPT应助yy采纳,获得10
11秒前
研友_xnEOX8发布了新的文献求助10
11秒前
星辰大海应助博弈春秋采纳,获得10
12秒前
顾矜应助qweerrtt采纳,获得10
12秒前
Horizon完成签到,获得积分10
13秒前
不太想学习完成签到 ,获得积分10
13秒前
单纯的冬灵完成签到 ,获得积分10
14秒前
15秒前
卫大公子发布了新的文献求助10
15秒前
16秒前
17秒前
shaheen完成签到,获得积分20
18秒前
xc完成签到,获得积分20
19秒前
Lyu完成签到,获得积分10
19秒前
整齐南莲发布了新的文献求助10
19秒前
害羞外套完成签到,获得积分20
20秒前
Ceceliayyy完成签到 ,获得积分10
21秒前
英勇羿完成签到,获得积分20
22秒前
curtisness应助zz采纳,获得10
22秒前
goofs完成签到,获得积分10
23秒前
wisteety完成签到,获得积分10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137308
求助须知:如何正确求助?哪些是违规求助? 2788393
关于积分的说明 7786079
捐赠科研通 2444547
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023