I, Doctor: Patient Preference for Medical Diagnostic Artificial Intelligence

偏爱 人工智能 心理学 计算机科学 统计 数学
作者
Autumn Charette,Chris Wickens,Benjamin A. Clegg
出处
期刊:Proceedings of the International Symposium of Human Factors and Ergonomics in Healthcare [SAGE]
卷期号:13 (1): 186-190
标识
DOI:10.1177/2327857924131019
摘要

Background: Artificial intelligence and automation have the ability to positively alter the practice of medicine through streamlined diagnostic timelines, increased diagnostic accuracy, and reducing employee workload. However, patients and providers alike may feel wary of implementing these technologies into their care. This study aims to evaluate four factors that may influence an individual’s preference for the use of these technologies: Accuracy, Efficiency, Invasiveness, and Risk. Methodology: We implemented a survey which presented hypothetical medical scenarios followed by questions relating to preference for an automated medical intervention against a traditional, non-automated human intervention among 60 psychology undergraduate students. Results: The study found that the accuracy and efficiency of the intervention greatly influenced participant preference for it, with higher accuracy or efficiency of the automation relating to a higher preference for the automation. It was also found that invasiveness did not significantly influence preference for an automated method, with participants failing to significantly choose the automated intervention even when it presented a less physically invasive option compared to the traditional method. Finally, it was found that participants significantly preferred the human over the automated intervention in higher-risk medical scenarios. Conclusion: By discussing the benefits of accuracy and efficiency in using automated healthcare tools, such as their ability to reduce wait times and diagnostic timelines, and implementing these technologies starting in low-risk scenarios, patients and providers alike may be more likely and willing to see the benefits these tools have to offer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助洒水水采纳,获得10
2秒前
JamesPei应助现实的曼安采纳,获得10
3秒前
所所应助有魅力的柠檬采纳,获得10
3秒前
4秒前
stupid发布了新的文献求助10
5秒前
6秒前
包容柜子完成签到 ,获得积分10
6秒前
乐观的中心完成签到,获得积分10
7秒前
7秒前
p_kunnnn完成签到,获得积分10
7秒前
务实老虎完成签到,获得积分10
7秒前
7秒前
李爱国应助哈哈哈哈哈哈采纳,获得10
7秒前
TimelyRain完成签到,获得积分20
8秒前
qiqi完成签到,获得积分10
8秒前
10秒前
10秒前
今后应助乐观的中心采纳,获得10
10秒前
stupid完成签到,获得积分10
10秒前
小蘑菇应助baby的跑男采纳,获得10
11秒前
万姒完成签到,获得积分10
11秒前
善良青筠完成签到 ,获得积分10
12秒前
TimelyRain发布了新的文献求助10
12秒前
典雅柚子发布了新的文献求助10
13秒前
13秒前
14秒前
张任的die发布了新的文献求助10
16秒前
16秒前
情怀应助平淡的尔琴采纳,获得10
16秒前
bkagyin应助xiaofei采纳,获得10
18秒前
大方的板栗关注了科研通微信公众号
18秒前
Ehgnix发布了新的文献求助10
18秒前
spring完成签到 ,获得积分10
19秒前
科研论文的狗完成签到,获得积分10
20秒前
预则立完成签到,获得积分10
20秒前
21秒前
ccm应助辰星采纳,获得10
21秒前
白小超人发布了新的文献求助10
21秒前
25秒前
yangyangyang完成签到,获得积分20
25秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
宽禁带半导体紫外光电探测器 588
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792975
关于积分的说明 7804827
捐赠科研通 2449305
什么是DOI,文献DOI怎么找? 1303150
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291