亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

I, Doctor: Patient Preference for Medical Diagnostic Artificial Intelligence

偏爱 人工智能 心理学 计算机科学 统计 数学
作者
Autumn Charette,Chris Wickens,Benjamin A. Clegg
出处
期刊:Proceedings of the International Symposium of Human Factors and Ergonomics in Healthcare [SAGE]
卷期号:13 (1): 186-190
标识
DOI:10.1177/2327857924131019
摘要

Background: Artificial intelligence and automation have the ability to positively alter the practice of medicine through streamlined diagnostic timelines, increased diagnostic accuracy, and reducing employee workload. However, patients and providers alike may feel wary of implementing these technologies into their care. This study aims to evaluate four factors that may influence an individual’s preference for the use of these technologies: Accuracy, Efficiency, Invasiveness, and Risk. Methodology: We implemented a survey which presented hypothetical medical scenarios followed by questions relating to preference for an automated medical intervention against a traditional, non-automated human intervention among 60 psychology undergraduate students. Results: The study found that the accuracy and efficiency of the intervention greatly influenced participant preference for it, with higher accuracy or efficiency of the automation relating to a higher preference for the automation. It was also found that invasiveness did not significantly influence preference for an automated method, with participants failing to significantly choose the automated intervention even when it presented a less physically invasive option compared to the traditional method. Finally, it was found that participants significantly preferred the human over the automated intervention in higher-risk medical scenarios. Conclusion: By discussing the benefits of accuracy and efficiency in using automated healthcare tools, such as their ability to reduce wait times and diagnostic timelines, and implementing these technologies starting in low-risk scenarios, patients and providers alike may be more likely and willing to see the benefits these tools have to offer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光合作用完成签到,获得积分10
5秒前
务实书包完成签到,获得积分10
9秒前
9秒前
Chris完成签到 ,获得积分10
12秒前
cy发布了新的文献求助10
16秒前
小蝶完成签到 ,获得积分10
19秒前
Eileen完成签到 ,获得积分0
20秒前
22秒前
娜行完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
28秒前
弋鱼发布了新的文献求助10
28秒前
胡大笑哈哈哈完成签到 ,获得积分10
31秒前
33秒前
正直的山雁完成签到,获得积分10
34秒前
cy发布了新的文献求助10
38秒前
完美世界应助党弛采纳,获得10
41秒前
乐乐应助弋鱼采纳,获得10
44秒前
Zeno完成签到 ,获得积分10
45秒前
聪明勇敢有力气完成签到 ,获得积分10
49秒前
舒适的石头完成签到,获得积分10
55秒前
小夜子完成签到 ,获得积分10
56秒前
58秒前
qingcahng发布了新的文献求助30
1分钟前
勤劳冰枫发布了新的文献求助10
1分钟前
Lucas应助党弛采纳,获得10
1分钟前
华仔应助qingcahng采纳,获得30
1分钟前
1分钟前
1分钟前
善学以致用应助西西采纳,获得10
1分钟前
充电宝应助amy采纳,获得10
1分钟前
1分钟前
1分钟前
zorro3574完成签到,获得积分10
1分钟前
amy发布了新的文献求助10
1分钟前
ZJ完成签到,获得积分10
1分钟前
xky200125完成签到 ,获得积分10
1分钟前
freeaway发布了新的文献求助10
1分钟前
辛勤三问完成签到,获得积分10
1分钟前
2分钟前
花花公子完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657845
求助须知:如何正确求助?哪些是违规求助? 4812927
关于积分的说明 15080444
捐赠科研通 4816043
什么是DOI,文献DOI怎么找? 2577063
邀请新用户注册赠送积分活动 1532055
关于科研通互助平台的介绍 1490626