化学
溶剂
乙腈
选择性
甲醇
手性柱色谱法
分析物
对映体
分辨率(逻辑)
高效液相色谱法
吸光度
色谱法
组合化学
有机化学
催化作用
人工智能
计算机科学
作者
Turaj Rahmani,Frédéric Lynen
标识
DOI:10.1021/acs.analchem.3c05040
摘要
Exploring the effectiveness of optically active solvents as mobile-phase modifiers in chiral liquid chromatography (LC) can offer an additional new tool to tune the chiral selectivity. Hence, the potential of l-ethyl lactate (LEL), a biobased solvent of this nature, was explored for its distinctive interactions with both the mobile phase and analytes, as anticipated from its chiral nature. The findings reveal that LEL provides distinct selectivity compared to commonly used modifiers in chiral LC. Reversed-phase LC (RPLC)-type chiral separations were therefore compared under various conditions whereby LEL was partially or completely replacing common achiral solvents such as acetonitrile (ACN) and methanol (MeOH). An increase in chiral resolution was obtained in 8 of 16 test compounds. For 5 of them a decrease was obtained, and 3 test solutes did not offer satisfactory results under any of the tested conditions on the polysaccharide columns. When LEL was combined with methanol instead of ACN, worse results were obtained, presumably due to its protic nature. Moreover, LEL demonstrates excellent compatibility with salt additives and is fully miscible with aqueous phases. Interestingly, a steeper increase in chiral resolution is observed for LEL, as compared to ACN at lower temperatures. While LEL is somewhat hindered by its higher UV absorbance, it paves the way toward more simplified chiral screening platforms, whereby chiral solutions can be found for fewer columns and greener solvents such as LEL are incorporated. Finally, to elucidate the impact of chiral interactions between the solvent and analytes, the influence of d-ethyl lactate (DEL) was compared with that of LEL. The results revealed different interactions between the stereoisomers of ethyl lactate (EL) and chiral analytes, demonstrating an influence of optically active solvents on enantioseparations.
科研通智能强力驱动
Strongly Powered by AbleSci AI