Prostate Cancer Risk Stratification in NRG Oncology Phase III Randomized Trials Using Multimodal Deep Learning With Digital Histopathology

医学 前列腺癌 肿瘤科 内科学 组织病理学 癌症 临床试验 随机对照试验 病理
作者
Jonathan D. Tward,Huei‐Chung Huang,Andre Esteva,Osama Mohamad,Douwe van der Wal,Jeffry P. Simko,Sandy DeVries,Jingbin Zhang,Songwan Joun,Timothy N. Showalter,Edward M. Schaeffer,Todd M. Morgan,Jedidiah M. Monson,James A. Wallace,Jean-Paul Bahary,Howard M. Sandler,Daniel E. Spratt,Joseph P. Rodgers,Felix Y. Feng,Phuoc T. Tran
出处
期刊:JCO precision oncology [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/po.24.00145
摘要

PURPOSE Current clinical risk stratification methods for localized prostate cancer are suboptimal, leading to over- and undertreatment. Recently, machine learning approaches using digital histopathology have shown superior prognostic ability in phase III trials. This study aims to develop a clinically usable risk grouping system using multimodal artificial intelligence (MMAI) models that outperform current National Comprehensive Cancer Network (NCCN) risk groups. MATERIALS AND METHODS The cohort comprised 9,787 patients with localized prostate cancer from eight NRG Oncology randomized phase III trials, treated with radiation therapy, androgen deprivation therapy, and/or chemotherapy. Locked MMAI models, which used digital histopathology images and clinical data, were applied to each patient. Expert consensus on cut points defined low-, intermediate-, and high-risk groups on the basis of 10-year distant metastasis rates of 3% and 10%, respectively. The MMAI's reclassification and prognostic performance were compared with the three-tier NCCN risk groups. RESULTS The median follow-up for censored patients was 7.9 years. According to NCCN risk categories, 30.4% of patients were low-risk, 25.5% intermediate-risk, and 44.1% high-risk. The MMAI risk classification identified 43.5% of patients as low-risk, 34.6% as intermediate-risk, and 21.8% as high-risk. MMAI reclassified 1,039 (42.0%) patients initially categorized by NCCN. Despite the MMAI low-risk group being larger than the NCCN low-risk group, the 10-year metastasis risks were comparable: 1.7% (95% CI, 0.2 to 3.2) for NCCN and 3.2% (95% CI, 1.7 to 4.7) for MMAI. The overall 10-year metastasis risk for NCCN high-risk patients was 16.6%, with MMAI further stratifying this group into low-, intermediate-, and high-risk, showing metastasis rates of 3.4%, 8.2%, and 26.3%, respectively. CONCLUSION The MMAI risk grouping system expands the population of men identified as having low metastatic risk and accurately pinpoints a high-risk subset with elevated metastasis rates. This approach aims to prevent both overtreatment and undertreatment in localized prostate cancer, facilitating shared decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝士发布了新的文献求助10
刚刚
cc关注了科研通微信公众号
刚刚
刚刚
Tina完成签到,获得积分10
1秒前
1秒前
Alexander完成签到,获得积分10
1秒前
1秒前
2秒前
你好纠结伦完成签到,获得积分10
2秒前
ziyue发布了新的文献求助20
2秒前
lyx发布了新的文献求助10
2秒前
张同学发布了新的文献求助10
2秒前
江台风完成签到,获得积分10
2秒前
辛德瑞拉继母完成签到,获得积分10
2秒前
英俊白莲发布了新的文献求助10
3秒前
蜜雪冰城完成签到,获得积分10
3秒前
3秒前
gnil发布了新的文献求助10
3秒前
wy.he应助xzn1123采纳,获得10
4秒前
FJLSDNMV发布了新的文献求助10
4秒前
完美世界应助zoey采纳,获得10
4秒前
在水一方应助majar采纳,获得30
4秒前
青柠发布了新的文献求助10
4秒前
4秒前
liuHX完成签到,获得积分10
4秒前
科研通AI6应助王子心采纳,获得10
4秒前
5秒前
Hoshiiii完成签到,获得积分10
5秒前
5秒前
5秒前
Bonnienuit完成签到 ,获得积分10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
know发布了新的文献求助10
7秒前
glycine发布了新的文献求助10
7秒前
Lucas应助liang采纳,获得10
7秒前
狂野未来完成签到 ,获得积分10
7秒前
stray完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665717
求助须知:如何正确求助?哪些是违规求助? 4877979
关于积分的说明 15115220
捐赠科研通 4824955
什么是DOI,文献DOI怎么找? 2582994
邀请新用户注册赠送积分活动 1537014
关于科研通互助平台的介绍 1495441