Prostate Cancer Risk Stratification in NRG Oncology Phase III Randomized Trials Using Multimodal Deep Learning With Digital Histopathology

医学 前列腺癌 肿瘤科 内科学 组织病理学 癌症 临床试验 随机对照试验 病理
作者
Jonathan D. Tward,Huei‐Chung Huang,Andre Esteva,Osama Mohamad,Douwe van der Wal,Jeffry P. Simko,Sandy DeVries,Jingbin Zhang,Songwan Joun,Timothy N. Showalter,Edward M. Schaeffer,Todd M. Morgan,Jedidiah M. Monson,James A. Wallace,Jean-Paul Bahary,Howard M. Sandler,Daniel E. Spratt,Joseph P. Rodgers,Felix Y. Feng,Phuoc T. Tran
出处
期刊:JCO precision oncology [Lippincott Williams & Wilkins]
卷期号: (8)
标识
DOI:10.1200/po.24.00145
摘要

PURPOSE Current clinical risk stratification methods for localized prostate cancer are suboptimal, leading to over- and undertreatment. Recently, machine learning approaches using digital histopathology have shown superior prognostic ability in phase III trials. This study aims to develop a clinically usable risk grouping system using multimodal artificial intelligence (MMAI) models that outperform current National Comprehensive Cancer Network (NCCN) risk groups. MATERIALS AND METHODS The cohort comprised 9,787 patients with localized prostate cancer from eight NRG Oncology randomized phase III trials, treated with radiation therapy, androgen deprivation therapy, and/or chemotherapy. Locked MMAI models, which used digital histopathology images and clinical data, were applied to each patient. Expert consensus on cut points defined low-, intermediate-, and high-risk groups on the basis of 10-year distant metastasis rates of 3% and 10%, respectively. The MMAI's reclassification and prognostic performance were compared with the three-tier NCCN risk groups. RESULTS The median follow-up for censored patients was 7.9 years. According to NCCN risk categories, 30.4% of patients were low-risk, 25.5% intermediate-risk, and 44.1% high-risk. The MMAI risk classification identified 43.5% of patients as low-risk, 34.6% as intermediate-risk, and 21.8% as high-risk. MMAI reclassified 1,039 (42.0%) patients initially categorized by NCCN. Despite the MMAI low-risk group being larger than the NCCN low-risk group, the 10-year metastasis risks were comparable: 1.7% (95% CI, 0.2 to 3.2) for NCCN and 3.2% (95% CI, 1.7 to 4.7) for MMAI. The overall 10-year metastasis risk for NCCN high-risk patients was 16.6%, with MMAI further stratifying this group into low-, intermediate-, and high-risk, showing metastasis rates of 3.4%, 8.2%, and 26.3%, respectively. CONCLUSION The MMAI risk grouping system expands the population of men identified as having low metastatic risk and accurately pinpoints a high-risk subset with elevated metastasis rates. This approach aims to prevent both overtreatment and undertreatment in localized prostate cancer, facilitating shared decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cicytjsxjr发布了新的文献求助10
刚刚
zero发布了新的文献求助10
刚刚
1秒前
1秒前
零食宝发布了新的文献求助10
1秒前
伊卡洛斯发布了新的文献求助10
1秒前
典雅的羿发布了新的文献求助10
2秒前
李爱国应助Qinghen采纳,获得10
2秒前
2秒前
NexusExplorer应助安安采纳,获得10
2秒前
2秒前
saywhy发布了新的文献求助10
3秒前
共享精神应助乐唔采纳,获得10
3秒前
哭泣朝雪完成签到,获得积分10
3秒前
yiyi完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
mys完成签到,获得积分10
4秒前
241867825发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
KKKK完成签到,获得积分10
6秒前
6秒前
7秒前
伍六七完成签到,获得积分10
7秒前
大个应助巧克力圣诞采纳,获得10
7秒前
卢雨生发布了新的文献求助10
7秒前
kjikji发布了新的文献求助10
8秒前
三三椋椋发布了新的文献求助10
8秒前
张张发布了新的文献求助10
8秒前
吴大打完成签到,获得积分10
9秒前
Liuxinyiliu完成签到,获得积分10
9秒前
大个应助伊卡洛斯采纳,获得10
10秒前
吴彦祖发布了新的文献求助10
11秒前
美好的涑发布了新的文献求助10
11秒前
脑洞疼应助左丘傲菡采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940451
求助须知:如何正确求助?哪些是违规求助? 4206580
关于积分的说明 13074753
捐赠科研通 3985154
什么是DOI,文献DOI怎么找? 2182031
邀请新用户注册赠送积分活动 1197696
关于科研通互助平台的介绍 1110012