Prostate Cancer Risk Stratification in NRG Oncology Phase III Randomized Trials Using Multimodal Deep Learning With Digital Histopathology

医学 前列腺癌 肿瘤科 内科学 组织病理学 癌症 临床试验 随机对照试验 病理
作者
Jonathan D. Tward,Huei‐Chung Huang,Andre Esteva,Osama Mohamad,Douwe van der Wal,Jeffry P. Simko,Sandy DeVries,Jingbin Zhang,Songwan Joun,Timothy N. Showalter,Edward M. Schaeffer,Todd M. Morgan,Jedidiah M. Monson,James A. Wallace,Jean-Paul Bahary,Howard M. Sandler,Daniel E. Spratt,Joseph P. Rodgers,Felix Y. Feng,Phuoc T. Tran
出处
期刊:JCO precision oncology [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/po.24.00145
摘要

PURPOSE Current clinical risk stratification methods for localized prostate cancer are suboptimal, leading to over- and undertreatment. Recently, machine learning approaches using digital histopathology have shown superior prognostic ability in phase III trials. This study aims to develop a clinically usable risk grouping system using multimodal artificial intelligence (MMAI) models that outperform current National Comprehensive Cancer Network (NCCN) risk groups. MATERIALS AND METHODS The cohort comprised 9,787 patients with localized prostate cancer from eight NRG Oncology randomized phase III trials, treated with radiation therapy, androgen deprivation therapy, and/or chemotherapy. Locked MMAI models, which used digital histopathology images and clinical data, were applied to each patient. Expert consensus on cut points defined low-, intermediate-, and high-risk groups on the basis of 10-year distant metastasis rates of 3% and 10%, respectively. The MMAI's reclassification and prognostic performance were compared with the three-tier NCCN risk groups. RESULTS The median follow-up for censored patients was 7.9 years. According to NCCN risk categories, 30.4% of patients were low-risk, 25.5% intermediate-risk, and 44.1% high-risk. The MMAI risk classification identified 43.5% of patients as low-risk, 34.6% as intermediate-risk, and 21.8% as high-risk. MMAI reclassified 1,039 (42.0%) patients initially categorized by NCCN. Despite the MMAI low-risk group being larger than the NCCN low-risk group, the 10-year metastasis risks were comparable: 1.7% (95% CI, 0.2 to 3.2) for NCCN and 3.2% (95% CI, 1.7 to 4.7) for MMAI. The overall 10-year metastasis risk for NCCN high-risk patients was 16.6%, with MMAI further stratifying this group into low-, intermediate-, and high-risk, showing metastasis rates of 3.4%, 8.2%, and 26.3%, respectively. CONCLUSION The MMAI risk grouping system expands the population of men identified as having low metastatic risk and accurately pinpoints a high-risk subset with elevated metastasis rates. This approach aims to prevent both overtreatment and undertreatment in localized prostate cancer, facilitating shared decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mo发布了新的文献求助30
刚刚
万有引力139完成签到,获得积分10
刚刚
煎饼果子不加葱完成签到,获得积分10
1秒前
wly完成签到,获得积分10
1秒前
2秒前
SBoot完成签到,获得积分10
5秒前
5秒前
善学以致用应助ANTI采纳,获得10
5秒前
5秒前
小猪坨完成签到,获得积分10
6秒前
6秒前
坦率问枫完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
茹茹完成签到 ,获得积分10
6秒前
无花果应助Vary采纳,获得10
7秒前
sylinmm完成签到,获得积分10
8秒前
F_ken完成签到 ,获得积分10
9秒前
9秒前
9秒前
无辜的梦竹完成签到,获得积分10
10秒前
会飞的鱼完成签到,获得积分10
10秒前
AKK发布了新的文献求助10
10秒前
melone完成签到,获得积分10
10秒前
11秒前
wanci应助嘿嘿采纳,获得10
11秒前
柳叶发布了新的文献求助10
13秒前
吴未发布了新的文献求助10
14秒前
14秒前
耶耶发布了新的文献求助10
14秒前
有生之年完成签到,获得积分10
14秒前
15秒前
仰泳鲫鱼发布了新的文献求助30
15秒前
小鹅完成签到,获得积分10
16秒前
Lee发布了新的文献求助10
19秒前
19秒前
20秒前
宫戚戚完成签到 ,获得积分10
21秒前
22秒前
22秒前
微弱de胖头完成签到,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093