Prostate Cancer Risk Stratification in NRG Oncology Phase III Randomized Trials Using Multimodal Deep Learning With Digital Histopathology

医学 前列腺癌 肿瘤科 内科学 组织病理学 癌症 临床试验 随机对照试验 病理
作者
Jonathan D. Tward,Huei‐Chung Huang,Andre Esteva,Osama Mohamad,Douwe van der Wal,Jeffry P. Simko,Sandy DeVries,Jingbin Zhang,Songwan Joun,Timothy N. Showalter,Edward M. Schaeffer,Todd M. Morgan,Jedidiah M. Monson,James A. Wallace,Jean-Paul Bahary,Howard M. Sandler,Daniel E. Spratt,Joseph P. Rodgers,Felix Y. Feng,Phuoc T. Tran
出处
期刊:JCO precision oncology [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/po.24.00145
摘要

PURPOSE Current clinical risk stratification methods for localized prostate cancer are suboptimal, leading to over- and undertreatment. Recently, machine learning approaches using digital histopathology have shown superior prognostic ability in phase III trials. This study aims to develop a clinically usable risk grouping system using multimodal artificial intelligence (MMAI) models that outperform current National Comprehensive Cancer Network (NCCN) risk groups. MATERIALS AND METHODS The cohort comprised 9,787 patients with localized prostate cancer from eight NRG Oncology randomized phase III trials, treated with radiation therapy, androgen deprivation therapy, and/or chemotherapy. Locked MMAI models, which used digital histopathology images and clinical data, were applied to each patient. Expert consensus on cut points defined low-, intermediate-, and high-risk groups on the basis of 10-year distant metastasis rates of 3% and 10%, respectively. The MMAI's reclassification and prognostic performance were compared with the three-tier NCCN risk groups. RESULTS The median follow-up for censored patients was 7.9 years. According to NCCN risk categories, 30.4% of patients were low-risk, 25.5% intermediate-risk, and 44.1% high-risk. The MMAI risk classification identified 43.5% of patients as low-risk, 34.6% as intermediate-risk, and 21.8% as high-risk. MMAI reclassified 1,039 (42.0%) patients initially categorized by NCCN. Despite the MMAI low-risk group being larger than the NCCN low-risk group, the 10-year metastasis risks were comparable: 1.7% (95% CI, 0.2 to 3.2) for NCCN and 3.2% (95% CI, 1.7 to 4.7) for MMAI. The overall 10-year metastasis risk for NCCN high-risk patients was 16.6%, with MMAI further stratifying this group into low-, intermediate-, and high-risk, showing metastasis rates of 3.4%, 8.2%, and 26.3%, respectively. CONCLUSION The MMAI risk grouping system expands the population of men identified as having low metastatic risk and accurately pinpoints a high-risk subset with elevated metastasis rates. This approach aims to prevent both overtreatment and undertreatment in localized prostate cancer, facilitating shared decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EthanChan完成签到,获得积分10
刚刚
生动高丽完成签到,获得积分10
刚刚
优秀元枫完成签到,获得积分10
1秒前
xu完成签到,获得积分10
1秒前
风中琦完成签到 ,获得积分10
1秒前
kke完成签到,获得积分10
1秒前
呆萌的青烟完成签到,获得积分10
1秒前
东风完成签到,获得积分10
2秒前
yeandpeng完成签到,获得积分20
2秒前
852应助ceeray23采纳,获得20
2秒前
刘白告发布了新的文献求助10
2秒前
小诗完成签到,获得积分10
2秒前
mm完成签到,获得积分10
2秒前
3秒前
方hh发布了新的文献求助10
3秒前
ZetianYang完成签到,获得积分10
3秒前
李佳发布了新的文献求助10
4秒前
高大的千秋完成签到,获得积分10
4秒前
粉呜呜呜海完成签到,获得积分10
4秒前
无名子完成签到 ,获得积分10
4秒前
TayBob完成签到,获得积分10
5秒前
ChenChen完成签到,获得积分10
5秒前
莫封叶完成签到,获得积分10
6秒前
可乐加冰完成签到,获得积分10
6秒前
英姑应助我就是歌手采纳,获得10
6秒前
Mr鹿完成签到,获得积分10
6秒前
隐形曼青应助刘白告采纳,获得10
7秒前
科研通AI6应助苏silence采纳,获得10
7秒前
Orange应助Jincen采纳,获得10
7秒前
之之完成签到,获得积分10
7秒前
8秒前
大角牛完成签到,获得积分10
8秒前
希望天下0贩的0应助under采纳,获得10
8秒前
8秒前
欣喜雅香完成签到,获得积分10
8秒前
爆米花应助高大的千秋采纳,获得10
8秒前
文献互助完成签到,获得积分10
9秒前
9秒前
与你完成签到 ,获得积分20
9秒前
量子星尘发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977