Prostate Cancer Risk Stratification in NRG Oncology Phase III Randomized Trials Using Multimodal Deep Learning With Digital Histopathology

医学 前列腺癌 肿瘤科 内科学 组织病理学 癌症 临床试验 随机对照试验 病理
作者
Jonathan D. Tward,Huei‐Chung Huang,Andre Esteva,Osama Mohamad,Douwe van der Wal,Jeffry P. Simko,Sandy DeVries,Jingbin Zhang,Songwan Joun,Timothy N. Showalter,Edward M. Schaeffer,Todd M. Morgan,Jedidiah M. Monson,James A. Wallace,Jean-Paul Bahary,Howard M. Sandler,Daniel E. Spratt,Joseph P. Rodgers,Felix Y. Feng,Phuoc T. Tran
出处
期刊:JCO precision oncology [Lippincott Williams & Wilkins]
卷期号: (8)
标识
DOI:10.1200/po.24.00145
摘要

PURPOSE Current clinical risk stratification methods for localized prostate cancer are suboptimal, leading to over- and undertreatment. Recently, machine learning approaches using digital histopathology have shown superior prognostic ability in phase III trials. This study aims to develop a clinically usable risk grouping system using multimodal artificial intelligence (MMAI) models that outperform current National Comprehensive Cancer Network (NCCN) risk groups. MATERIALS AND METHODS The cohort comprised 9,787 patients with localized prostate cancer from eight NRG Oncology randomized phase III trials, treated with radiation therapy, androgen deprivation therapy, and/or chemotherapy. Locked MMAI models, which used digital histopathology images and clinical data, were applied to each patient. Expert consensus on cut points defined low-, intermediate-, and high-risk groups on the basis of 10-year distant metastasis rates of 3% and 10%, respectively. The MMAI's reclassification and prognostic performance were compared with the three-tier NCCN risk groups. RESULTS The median follow-up for censored patients was 7.9 years. According to NCCN risk categories, 30.4% of patients were low-risk, 25.5% intermediate-risk, and 44.1% high-risk. The MMAI risk classification identified 43.5% of patients as low-risk, 34.6% as intermediate-risk, and 21.8% as high-risk. MMAI reclassified 1,039 (42.0%) patients initially categorized by NCCN. Despite the MMAI low-risk group being larger than the NCCN low-risk group, the 10-year metastasis risks were comparable: 1.7% (95% CI, 0.2 to 3.2) for NCCN and 3.2% (95% CI, 1.7 to 4.7) for MMAI. The overall 10-year metastasis risk for NCCN high-risk patients was 16.6%, with MMAI further stratifying this group into low-, intermediate-, and high-risk, showing metastasis rates of 3.4%, 8.2%, and 26.3%, respectively. CONCLUSION The MMAI risk grouping system expands the population of men identified as having low metastatic risk and accurately pinpoints a high-risk subset with elevated metastasis rates. This approach aims to prevent both overtreatment and undertreatment in localized prostate cancer, facilitating shared decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sakura发布了新的文献求助10
刚刚
1秒前
二三发布了新的文献求助10
2秒前
2秒前
科研通AI6应助666采纳,获得10
3秒前
zhou完成签到,获得积分10
3秒前
彭于晏应助yangxt-iga采纳,获得10
3秒前
di完成签到,获得积分10
4秒前
4秒前
zzulyy发布了新的文献求助10
4秒前
whoami完成签到,获得积分10
4秒前
玛卡巴卡发布了新的文献求助10
5秒前
Wang发布了新的文献求助10
5秒前
5秒前
6秒前
小古发布了新的文献求助10
6秒前
tianyue发布了新的文献求助10
7秒前
Qi齐发布了新的文献求助10
7秒前
7秒前
8R60d8应助小超人采纳,获得10
8秒前
JJ完成签到,获得积分10
8秒前
9秒前
丘比特应助1551采纳,获得10
9秒前
10秒前
Ramy发布了新的文献求助10
10秒前
TIAN完成签到,获得积分20
10秒前
11秒前
任浩发布了新的文献求助10
11秒前
11秒前
直率如凡发布了新的文献求助10
12秒前
路老师完成签到,获得积分10
12秒前
刘浩然发布了新的文献求助10
13秒前
哈机密南北撸多完成签到,获得积分10
14秒前
14秒前
14秒前
哎嘿发布了新的文献求助10
15秒前
NiLou发布了新的文献求助10
15秒前
丘比特应助cc采纳,获得10
15秒前
快逃完成签到,获得积分10
15秒前
di发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708