High‐Voltage Single‐Ion Covalent Organic Framework Electrolytes Enabled by Nitrile Migration Ladders for Lithium Metal Batteries

共价键 锂(药物) 电解质 离子电导率 离子键合 有机自由基电池 离子 材料科学 电化学 密度泛函理论 化学 电极 计算化学 有机化学 物理化学 内分泌学 医学
作者
Weiping Li,Shantao Han,Chenxi Xiao,Jingying Yan,Baifei Wu,Peng Wen,Jun Lin,Mao Chen,Xinrong Lin
出处
期刊:Angewandte Chemie [Wiley]
卷期号:63 (42): e202410392-e202410392 被引量:17
标识
DOI:10.1002/anie.202410392
摘要

Abstract The poor electrochemical stability window and low ionic conductivity in solid‐state electrolytes hinder the development of safe, high‐voltage, and energy‐dense lithium metal batteries. Herein, taking advantage of the unique electronic effect of nitrile groups, we designed a novel azanide‐based single‐ion covalent organic framework (CN−iCOF) structure that possesses effective Li + transport and high‐voltage stability in lithium metal batteries. Density functional theory (DFT) calculations and molecular dynamics (MD) revealed that electron‐withdrawing nitrile groups not only resulted in an ultralow HOMO energy orbital but also enhanced Li + dissociation through charge delocalization, leading to a high t Li+ of 0.93 and remarkable oxidative stability up to 5.6 V (vs. Li + /Li) simultaneously. Moreover, cyanation leveraging Strecker reaction transformed reversible imine‐linkage to a stable sp 3 ‐carbon‐containing azanide anion, which facilitated contorted alignment of transport “ladders” along the one‐dimensional anionic channels and the ionic conductivity could reach 1.33×10 −5 S cm −1 at ambient temperature without any additives. As a result, CN−iCOF allowed operation of solid‐state lithium metal batteries with high‐voltage cathodes such as LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NCM811), demonstrating stable lithium deposition up to 1,100 h and reversible battery cycling at ambient temperature up to 4.5 V, shedding light on the importance of discovering new functionality for forthcoming high‐performance batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
齐天大圣完成签到,获得积分10
1秒前
华仔应助嘻嘻采纳,获得10
1秒前
ALLEN发布了新的文献求助10
1秒前
1秒前
zhonghang2024应助蓝白胖次哇采纳,获得10
2秒前
2秒前
2秒前
3秒前
玛卡发布了新的文献求助10
4秒前
5秒前
Freedom完成签到,获得积分10
5秒前
5秒前
齐天大圣发布了新的文献求助10
7秒前
JamesPei应助大胆的飞扬采纳,获得10
7秒前
碧蓝俊驰完成签到,获得积分10
9秒前
强子今天读文献了嘛完成签到,获得积分10
9秒前
hahaha完成签到 ,获得积分10
9秒前
9秒前
伶俐的小卓完成签到,获得积分10
9秒前
LSY发布了新的文献求助10
10秒前
深情安青应助北木南采纳,获得10
10秒前
慕容生完成签到,获得积分10
10秒前
10秒前
Reece完成签到,获得积分10
11秒前
12秒前
Hello应助Lmy采纳,获得10
12秒前
13秒前
爆米花应助Dean采纳,获得30
14秒前
善学以致用应助wr采纳,获得10
14秒前
清秀晓筠发布了新的文献求助30
14秒前
kai chen应助Mr采纳,获得10
16秒前
16秒前
淳于汲发布了新的文献求助10
16秒前
17秒前
水上汀州完成签到 ,获得积分10
17秒前
情怀应助ningning采纳,获得10
17秒前
17秒前
仲夏完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633215
求助须知:如何正确求助?哪些是违规求助? 4728654
关于积分的说明 14985295
捐赠科研通 4791156
什么是DOI,文献DOI怎么找? 2558773
邀请新用户注册赠送积分活动 1519196
关于科研通互助平台的介绍 1479516