TOPSIS based multi-fidelity Co-Kriging for multiple response prediction of structures with uncertainties through real-time hybrid simulation

克里金 托普西斯 不确定度量化 忠诚 采样(信号处理) 理想溶液 计算机科学 算法 数学优化 工程类 数学 机器学习 运筹学 电信 热力学 滤波器(信号处理) 物理 计算机视觉
作者
Cheng Chen,Desheng Ran,Yanlin Yang,Hetao Hou,Changle Peng
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:280: 115734-115734 被引量:5
标识
DOI:10.1016/j.engstruct.2023.115734
摘要

Energy dissipation devices in vibration control often present challenges for accurate modeling and uncertainty quantification through computational simulation. Simplified numerical models of these devices might not realistically represent their behavior under earthquakes thus lead to errors in response prediction and uncertainty quantification. This study further explores the integration of Co-Kriging meta-modeling and real-time hybrid simulation (RTHS) for global response prediction of multi-degree-of-freedom systems under the presence of structural uncertainties. RTHS in laboratory is taken as high-fidelity (HF) model while computational simulation with approximate modeling is used as low-fidelity (LF) model. Multi-fidelity modeling is integrated through Co-Kriging to render accurate response prediction over the entire sample space of uncertainty. An entropy-based sequential sampling is integrated with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to sequentially determine new sampling points for HF and LF simulation. The proposed TOPSIS based multi-fidelity Co-Kriging approach is experimentally evaluated through RTHS of a two-degree-of-freedom structure with self-centering viscous dampers. Accuracy of Co-Kriging prediction are further evaluated through validation tests. It is demonstrated that TOPSIS can effectively reduce the number of RTHS tests in laboratory required by multi-fidelity Co-Kriging to achieve better prediction accuracy. The study presents an innovative and effective way to apply RTHS for efficient uncertainty quantification of multiple response quantities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华姝完成签到,获得积分20
1秒前
大个应助寒冷书竹采纳,获得10
1秒前
白石溪完成签到,获得积分10
2秒前
薛强发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
6秒前
务实静槐完成签到,获得积分10
7秒前
cowboy123完成签到,获得积分20
7秒前
yuiop完成签到,获得积分10
7秒前
Wecple完成签到 ,获得积分10
8秒前
好多鱼完成签到,获得积分10
8秒前
柔弱航空完成签到 ,获得积分10
9秒前
专一的书雪完成签到,获得积分10
9秒前
9秒前
fd163c完成签到,获得积分10
10秒前
123完成签到,获得积分10
13秒前
852应助青鹧采纳,获得10
13秒前
Lucas应助燃烧的皮皮虾采纳,获得10
13秒前
向上发布了新的文献求助10
15秒前
可露丽发布了新的文献求助10
15秒前
666完成签到,获得积分10
15秒前
smile完成签到,获得积分10
15秒前
筱星完成签到,获得积分10
15秒前
free完成签到,获得积分10
16秒前
whitebird完成签到,获得积分10
16秒前
XinEr完成签到 ,获得积分10
16秒前
aaaa完成签到,获得积分10
16秒前
沉静胜完成签到,获得积分10
16秒前
16秒前
16秒前
缓慢的冬云完成签到,获得积分10
17秒前
17秒前
碎冰蓝完成签到,获得积分10
17秒前
快乐游轮完成签到 ,获得积分10
18秒前
追寻紫安完成签到,获得积分10
18秒前
整齐醉冬完成签到,获得积分10
20秒前
默存完成签到,获得积分10
20秒前
务实的胡萝卜完成签到 ,获得积分10
20秒前
寒冷书竹发布了新的文献求助10
21秒前
李浩发布了新的文献求助10
21秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499089
关于积分的说明 11093922
捐赠科研通 3229669
什么是DOI,文献DOI怎么找? 1785711
邀请新用户注册赠送积分活动 869476
科研通“疑难数据库(出版商)”最低求助积分说明 801478