TOPSIS based multi-fidelity Co-Kriging for multiple response prediction of structures with uncertainties through real-time hybrid simulation

克里金 托普西斯 不确定度量化 忠诚 采样(信号处理) 理想溶液 计算机科学 算法 数学优化 工程类 数学 机器学习 电信 运筹学 物理 滤波器(信号处理) 计算机视觉 热力学
作者
Cheng Chen,Desheng Ran,Yanlin Yang,Hetao Hou,Changle Peng
出处
期刊:Engineering Structures [Elsevier]
卷期号:280: 115734-115734 被引量:5
标识
DOI:10.1016/j.engstruct.2023.115734
摘要

Energy dissipation devices in vibration control often present challenges for accurate modeling and uncertainty quantification through computational simulation. Simplified numerical models of these devices might not realistically represent their behavior under earthquakes thus lead to errors in response prediction and uncertainty quantification. This study further explores the integration of Co-Kriging meta-modeling and real-time hybrid simulation (RTHS) for global response prediction of multi-degree-of-freedom systems under the presence of structural uncertainties. RTHS in laboratory is taken as high-fidelity (HF) model while computational simulation with approximate modeling is used as low-fidelity (LF) model. Multi-fidelity modeling is integrated through Co-Kriging to render accurate response prediction over the entire sample space of uncertainty. An entropy-based sequential sampling is integrated with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to sequentially determine new sampling points for HF and LF simulation. The proposed TOPSIS based multi-fidelity Co-Kriging approach is experimentally evaluated through RTHS of a two-degree-of-freedom structure with self-centering viscous dampers. Accuracy of Co-Kriging prediction are further evaluated through validation tests. It is demonstrated that TOPSIS can effectively reduce the number of RTHS tests in laboratory required by multi-fidelity Co-Kriging to achieve better prediction accuracy. The study presents an innovative and effective way to apply RTHS for efficient uncertainty quantification of multiple response quantities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研猫发布了新的文献求助10
1秒前
2秒前
monicaj完成签到 ,获得积分10
3秒前
努力上进的小张完成签到,获得积分10
4秒前
不配.给时间煮雨我煮鱼的求助进行了留言
4秒前
小文cremen发布了新的文献求助10
6秒前
烟花应助Dragon3rd采纳,获得10
7秒前
科研通AI2S应助小余采纳,获得10
8秒前
8秒前
10秒前
瘦瘦友易发布了新的文献求助10
13秒前
林药师完成签到,获得积分10
15秒前
16秒前
17秒前
追梦人完成签到,获得积分20
17秒前
20秒前
勤恳的念云完成签到,获得积分10
21秒前
22秒前
铜离子完成签到 ,获得积分10
22秒前
23秒前
小文cremen完成签到 ,获得积分10
24秒前
24秒前
CipherSage应助瘦瘦友易采纳,获得10
25秒前
zeb完成签到,获得积分10
25秒前
俭朴的天曼完成签到,获得积分10
26秒前
zeb发布了新的文献求助10
27秒前
theThreeMagi完成签到,获得积分10
28秒前
31秒前
李健应助maxyer采纳,获得10
31秒前
Ryan完成签到,获得积分10
33秒前
瘦瘦友易完成签到,获得积分10
33秒前
科研猫发布了新的文献求助10
34秒前
叶子完成签到 ,获得积分10
34秒前
宣宣宣0733发布了新的文献求助10
35秒前
35秒前
ls1260798887应助zijingliang采纳,获得50
37秒前
38秒前
优雅的盼夏完成签到 ,获得积分10
39秒前
39秒前
40秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239581
求助须知:如何正确求助?哪些是违规求助? 2884857
关于积分的说明 8235641
捐赠科研通 2553038
什么是DOI,文献DOI怎么找? 1381250
科研通“疑难数据库(出版商)”最低求助积分说明 649225
邀请新用户注册赠送积分活动 624908