The Nodes Influence Maximization in Open Source Software Community Based on Probability Propagation Model

计算机科学 正确性 节点(物理) 最大化 软件 排名(信息检索) 开源软件 数据挖掘 网络拓扑 分布式计算 机器学习 计算机网络 数学优化 算法 数学 工程类 程序设计语言 结构工程
作者
Qing Zhao,Xiangjuan Yao,Xiangying Dang,Dunwei Gong
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (4): 2386-2395 被引量:3
标识
DOI:10.1109/tnse.2023.3247485
摘要

It is of great significance to effectively and quickly identify the most influential users in the open source software community, which can be represented by a complex network. Traditional methods of measuring node influence only consider some topology characteristics of the network, so the results are one-sided. Because there are different interactive behaviors among users in the community, it is necessary to mine more interaction information, so as to give a more comprehensive measure of node influence. In view of this, this paper proposes a method to maximize the node influence of open source software community based on a probability propagation model. Firstly, according to the relationship of users and their interactive records on projects, this paper quantifies the feedback of users on the project from three aspects (i.e. approve, save and modify) and establishes a new probability propagation model between users. Secondly, this paper proposes an algorithm(SIUF) to evaluate users' influence in the open source software community based on the probability propagation model. The algorithm fully considers the interaction behavior of users in the community. In the first stage, the user's own activity is taken as the initial ranking. In the second stage, the influence of neighbor nodes is taken into account, and the SIUF value of nodes is accumulated while the rich club effect is weakened. Finally, the proposed theory and method are applied to GitHub, a typical open source software community, and the correctness and effectiveness of this method are verified from influence spread and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
334niubi666发布了新的文献求助10
1秒前
3秒前
xyzemm完成签到 ,获得积分10
5秒前
大聪明完成签到,获得积分10
5秒前
李健应助Alpha不吃小蛋糕采纳,获得10
6秒前
7秒前
努力努力123完成签到,获得积分10
7秒前
风驻云停发布了新的文献求助10
8秒前
我是老大应助鹿叽叽采纳,获得10
8秒前
yiooo发布了新的文献求助30
8秒前
YYYYYY完成签到,获得积分10
11秒前
Hello应助大锤采纳,获得10
13秒前
txkahy发布了新的文献求助10
13秒前
houbinghua完成签到,获得积分10
13秒前
13秒前
可英完成签到,获得积分10
15秒前
寒冷山雁发布了新的文献求助10
17秒前
Joy完成签到 ,获得积分10
18秒前
19秒前
19秒前
20秒前
Lemon应助懵了采纳,获得10
21秒前
寻道图强完成签到,获得积分0
22秒前
MMM完成签到,获得积分10
22秒前
木木发布了新的文献求助10
24秒前
25秒前
Owen应助ewk采纳,获得10
26秒前
26秒前
刘敏完成签到 ,获得积分10
27秒前
好好好好好完成签到,获得积分10
29秒前
29秒前
慕青应助寒冷山雁采纳,获得10
31秒前
34秒前
ajjyou发布了新的文献求助20
35秒前
kokerol发布了新的文献求助10
36秒前
38秒前
38秒前
19完成签到,获得积分0
42秒前
活力冬日完成签到,获得积分10
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308459
求助须知:如何正确求助?哪些是违规求助? 2941791
关于积分的说明 8505743
捐赠科研通 2616655
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648928