已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Data fusion with factored quantization for stock trend prediction using neural networks

计算机科学 量化(信号处理) 人工神经网络 离散化 数据挖掘 时间序列 传感器融合 矢量量化 反向传播 人工智能 机器学习 算法 数学 数学分析
作者
Kinjal Chaudhari,Ankit Thakkar
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (3): 103293-103293 被引量:8
标识
DOI:10.1016/j.ipm.2023.103293
摘要

As compared to the continuous temporal distributions, discrete data representations may be desired for simplified and faster data analysis and forecasting. Data compression can introduce one of the efficient ways to reduce continuous historical stock market data and present them in discrete forms; while predicting stock trend, a primary concern is towards up and down directions of the price movement and thus, data discretization for a focused approach can be beneficial. In this article, we propose a quantization-based data fusion approach with a primary motivation to reduce data complexity and hence, enhance the prediction ability of a model. Here, the continuous time-series values are transformed into discrete quantum values prior to applying them to a prediction model. We extend the proposed approach and factorize quantization by integrating different quantization step sizes. Such fused data can reduce the data to mainly concentrate on the stock price movement direction. To empirically evaluate the proposed approach for stock trend prediction, we adopt long short-term memory, deep neural network, and backpropagation neural network models and compare our prediction results with five existing approaches on several datasets using ten performance metrics. We analyze the impact of specific quantization factors and determine the individual best as well as overall best factor sizes; the results indicate a consistent performance enhancement in stock trend prediction accuracy as compared to the considered baseline methods with an improvement up to 7%. To evaluate the impact of quantization-based data fusion, we analyze time required to execute the experiments along with percentage reduction in the number of unique numeric terms. Further, these results are statistically evaluated using Wilcoxon signed-rank test. We discuss the superiority and applicability of factored quantization-based data fusion approach and conclude our work with potential future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助organoid elegan采纳,获得10
刚刚
刚刚
搞怪薯片发布了新的文献求助10
1秒前
段盈完成签到,获得积分10
2秒前
风趣的灵枫完成签到 ,获得积分10
3秒前
一二完成签到,获得积分10
3秒前
3秒前
3秒前
gtgyh完成签到 ,获得积分10
4秒前
七七完成签到 ,获得积分10
4秒前
顺利秋灵发布了新的文献求助10
5秒前
明时完成签到,获得积分10
7秒前
牟翎发布了新的文献求助10
7秒前
优雅夕阳完成签到 ,获得积分10
8秒前
MchemG完成签到,获得积分0
9秒前
Bizibili完成签到,获得积分10
9秒前
克泷完成签到 ,获得积分10
9秒前
10秒前
Augustines完成签到,获得积分10
11秒前
两个我完成签到 ,获得积分10
12秒前
顺利秋灵完成签到,获得积分10
12秒前
15秒前
聪慧不二完成签到 ,获得积分10
19秒前
neonsun完成签到,获得积分0
20秒前
organoid elegan完成签到,获得积分10
20秒前
23秒前
万事屋完成签到 ,获得积分10
24秒前
25秒前
25秒前
江上游完成签到 ,获得积分10
25秒前
严明完成签到,获得积分10
26秒前
牟翎完成签到,获得积分10
26秒前
leena完成签到 ,获得积分10
26秒前
归尘完成签到,获得积分10
26秒前
归尘发布了新的文献求助10
29秒前
义气幼珊完成签到 ,获得积分10
29秒前
31秒前
Evi发布了新的文献求助10
32秒前
orixero应助naiqeux采纳,获得30
33秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976560
求助须知:如何正确求助?哪些是违规求助? 3520659
关于积分的说明 11204287
捐赠科研通 3257271
什么是DOI,文献DOI怎么找? 1798653
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806570