Data fusion with factored quantization for stock trend prediction using neural networks

计算机科学 量化(信号处理) 人工神经网络 离散化 数据挖掘 时间序列 传感器融合 矢量量化 反向传播 人工智能 机器学习 算法 数学 数学分析
作者
Kinjal Chaudhari,Ankit Thakkar
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (3): 103293-103293 被引量:8
标识
DOI:10.1016/j.ipm.2023.103293
摘要

As compared to the continuous temporal distributions, discrete data representations may be desired for simplified and faster data analysis and forecasting. Data compression can introduce one of the efficient ways to reduce continuous historical stock market data and present them in discrete forms; while predicting stock trend, a primary concern is towards up and down directions of the price movement and thus, data discretization for a focused approach can be beneficial. In this article, we propose a quantization-based data fusion approach with a primary motivation to reduce data complexity and hence, enhance the prediction ability of a model. Here, the continuous time-series values are transformed into discrete quantum values prior to applying them to a prediction model. We extend the proposed approach and factorize quantization by integrating different quantization step sizes. Such fused data can reduce the data to mainly concentrate on the stock price movement direction. To empirically evaluate the proposed approach for stock trend prediction, we adopt long short-term memory, deep neural network, and backpropagation neural network models and compare our prediction results with five existing approaches on several datasets using ten performance metrics. We analyze the impact of specific quantization factors and determine the individual best as well as overall best factor sizes; the results indicate a consistent performance enhancement in stock trend prediction accuracy as compared to the considered baseline methods with an improvement up to 7%. To evaluate the impact of quantization-based data fusion, we analyze time required to execute the experiments along with percentage reduction in the number of unique numeric terms. Further, these results are statistically evaluated using Wilcoxon signed-rank test. We discuss the superiority and applicability of factored quantization-based data fusion approach and conclude our work with potential future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guoliyun发布了新的文献求助10
刚刚
wxx完成签到,获得积分10
1秒前
豆豆发布了新的文献求助10
1秒前
英姑应助迅速初柳采纳,获得10
1秒前
Archer发布了新的文献求助10
2秒前
所所应助joyemovie采纳,获得10
5秒前
YY完成签到 ,获得积分10
5秒前
5秒前
hongfei发布了新的文献求助200
7秒前
善良的人给善良的人的求助进行了留言
9秒前
9秒前
万能图书馆应助bingbing采纳,获得10
9秒前
jessie完成签到,获得积分10
10秒前
10秒前
川上富江完成签到 ,获得积分10
10秒前
tly发布了新的文献求助50
12秒前
传奇3应助幽默的厉采纳,获得10
12秒前
传奇3应助jinjinjin采纳,获得10
16秒前
joseph应助22222采纳,获得10
17秒前
George发布了新的文献求助30
17秒前
18秒前
在水一方应助111采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
Chelry完成签到,获得积分10
19秒前
21秒前
田様应助幽默的厉采纳,获得10
21秒前
22秒前
吕旭发布了新的文献求助10
23秒前
六六完成签到,获得积分10
23秒前
小杰发布了新的文献求助10
26秒前
26秒前
Leewener完成签到,获得积分10
28秒前
superbanggg完成签到,获得积分10
28秒前
28秒前
29秒前
30秒前
Owen应助忧郁的猕猴桃采纳,获得10
30秒前
林夕完成签到,获得积分10
30秒前
热心市民小红花应助ei123采纳,获得30
31秒前
zain完成签到 ,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969884
求助须知:如何正确求助?哪些是违规求助? 3514604
关于积分的说明 11174901
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795149
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804891