亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data fusion with factored quantization for stock trend prediction using neural networks

计算机科学 量化(信号处理) 人工神经网络 离散化 数据挖掘 时间序列 传感器融合 矢量量化 反向传播 人工智能 机器学习 算法 数学 数学分析
作者
Kinjal Chaudhari,Ankit Thakkar
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (3): 103293-103293 被引量:8
标识
DOI:10.1016/j.ipm.2023.103293
摘要

As compared to the continuous temporal distributions, discrete data representations may be desired for simplified and faster data analysis and forecasting. Data compression can introduce one of the efficient ways to reduce continuous historical stock market data and present them in discrete forms; while predicting stock trend, a primary concern is towards up and down directions of the price movement and thus, data discretization for a focused approach can be beneficial. In this article, we propose a quantization-based data fusion approach with a primary motivation to reduce data complexity and hence, enhance the prediction ability of a model. Here, the continuous time-series values are transformed into discrete quantum values prior to applying them to a prediction model. We extend the proposed approach and factorize quantization by integrating different quantization step sizes. Such fused data can reduce the data to mainly concentrate on the stock price movement direction. To empirically evaluate the proposed approach for stock trend prediction, we adopt long short-term memory, deep neural network, and backpropagation neural network models and compare our prediction results with five existing approaches on several datasets using ten performance metrics. We analyze the impact of specific quantization factors and determine the individual best as well as overall best factor sizes; the results indicate a consistent performance enhancement in stock trend prediction accuracy as compared to the considered baseline methods with an improvement up to 7%. To evaluate the impact of quantization-based data fusion, we analyze time required to execute the experiments along with percentage reduction in the number of unique numeric terms. Further, these results are statistically evaluated using Wilcoxon signed-rank test. We discuss the superiority and applicability of factored quantization-based data fusion approach and conclude our work with potential future research directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助小刘小刘采纳,获得80
7秒前
33秒前
36秒前
Yuanyuan发布了新的文献求助10
39秒前
42秒前
烟花应助科研通管家采纳,获得10
42秒前
JamesPei应助77采纳,获得10
45秒前
阿K完成签到,获得积分10
46秒前
sophy发布了新的文献求助20
47秒前
53秒前
默己完成签到 ,获得积分10
58秒前
77发布了新的文献求助10
59秒前
害羞的高跟鞋完成签到,获得积分20
1分钟前
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
77完成签到,获得积分10
1分钟前
2分钟前
奋斗的小研完成签到,获得积分10
2分钟前
里昂义务发布了新的文献求助30
2分钟前
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6.1应助毛毛采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
老石完成签到 ,获得积分10
3分钟前
3分钟前
Yuanyuan发布了新的文献求助10
3分钟前
3分钟前
朝雪关注了科研通微信公众号
4分钟前
Yuanyuan发布了新的文献求助10
4分钟前
朝雪完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
arniu2008完成签到,获得积分20
5分钟前
科研通AI6.1应助曾经问雁采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788771
求助须知:如何正确求助?哪些是违规求助? 5711930
关于积分的说明 15473908
捐赠科研通 4916776
什么是DOI,文献DOI怎么找? 2646575
邀请新用户注册赠送积分活动 1594240
关于科研通互助平台的介绍 1548666