Data fusion with factored quantization for stock trend prediction using neural networks

计算机科学 量化(信号处理) 人工神经网络 离散化 数据挖掘 时间序列 传感器融合 矢量量化 反向传播 人工智能 机器学习 算法 数学 数学分析
作者
Kinjal Chaudhari,Ankit Thakkar
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (3): 103293-103293 被引量:8
标识
DOI:10.1016/j.ipm.2023.103293
摘要

As compared to the continuous temporal distributions, discrete data representations may be desired for simplified and faster data analysis and forecasting. Data compression can introduce one of the efficient ways to reduce continuous historical stock market data and present them in discrete forms; while predicting stock trend, a primary concern is towards up and down directions of the price movement and thus, data discretization for a focused approach can be beneficial. In this article, we propose a quantization-based data fusion approach with a primary motivation to reduce data complexity and hence, enhance the prediction ability of a model. Here, the continuous time-series values are transformed into discrete quantum values prior to applying them to a prediction model. We extend the proposed approach and factorize quantization by integrating different quantization step sizes. Such fused data can reduce the data to mainly concentrate on the stock price movement direction. To empirically evaluate the proposed approach for stock trend prediction, we adopt long short-term memory, deep neural network, and backpropagation neural network models and compare our prediction results with five existing approaches on several datasets using ten performance metrics. We analyze the impact of specific quantization factors and determine the individual best as well as overall best factor sizes; the results indicate a consistent performance enhancement in stock trend prediction accuracy as compared to the considered baseline methods with an improvement up to 7%. To evaluate the impact of quantization-based data fusion, we analyze time required to execute the experiments along with percentage reduction in the number of unique numeric terms. Further, these results are statistically evaluated using Wilcoxon signed-rank test. We discuss the superiority and applicability of factored quantization-based data fusion approach and conclude our work with potential future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪人雄完成签到,获得积分10
1秒前
落后的夜阑完成签到,获得积分10
1秒前
大橙子发布了新的文献求助10
4秒前
彪行天下完成签到,获得积分10
9秒前
danli完成签到 ,获得积分10
10秒前
guangyu完成签到,获得积分10
12秒前
学术老6完成签到,获得积分10
13秒前
c123完成签到 ,获得积分10
15秒前
恐怖稽器人完成签到,获得积分10
15秒前
WXR完成签到,获得积分10
16秒前
科研小白完成签到,获得积分10
16秒前
17秒前
可爱丸子完成签到,获得积分10
17秒前
皮汤汤完成签到 ,获得积分10
18秒前
JXDYYZK完成签到,获得积分10
19秒前
SYLH应助lu采纳,获得10
19秒前
Servant2023完成签到,获得积分10
19秒前
鸽子的迷信完成签到,获得积分10
21秒前
nine2652完成签到 ,获得积分10
22秒前
烂漫的睫毛完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
陈老太完成签到 ,获得积分10
25秒前
宇宇宇c完成签到,获得积分10
26秒前
zxt完成签到,获得积分10
27秒前
大橙子发布了新的文献求助10
30秒前
聪明静柏完成签到 ,获得积分10
32秒前
kimiwanano完成签到,获得积分10
34秒前
lu完成签到,获得积分10
35秒前
Profeto应助齐嫒琳采纳,获得10
36秒前
37秒前
情怀应助科研通管家采纳,获得10
38秒前
从来都不会放弃zr完成签到,获得积分10
42秒前
1459完成签到,获得积分10
44秒前
行者+完成签到,获得积分10
44秒前
GongSyi完成签到 ,获得积分10
45秒前
Boris完成签到 ,获得积分10
47秒前
哭泣笑柳完成签到,获得积分10
47秒前
万能图书馆应助大橙子采纳,获得10
50秒前
大眼睛土豆完成签到,获得积分10
54秒前
一条虫gg完成签到,获得积分10
57秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022