Data fusion with factored quantization for stock trend prediction using neural networks

计算机科学 量化(信号处理) 人工神经网络 离散化 数据挖掘 时间序列 传感器融合 矢量量化 反向传播 人工智能 机器学习 算法 数学 数学分析
作者
Kinjal Chaudhari,Ankit Thakkar
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (3): 103293-103293 被引量:8
标识
DOI:10.1016/j.ipm.2023.103293
摘要

As compared to the continuous temporal distributions, discrete data representations may be desired for simplified and faster data analysis and forecasting. Data compression can introduce one of the efficient ways to reduce continuous historical stock market data and present them in discrete forms; while predicting stock trend, a primary concern is towards up and down directions of the price movement and thus, data discretization for a focused approach can be beneficial. In this article, we propose a quantization-based data fusion approach with a primary motivation to reduce data complexity and hence, enhance the prediction ability of a model. Here, the continuous time-series values are transformed into discrete quantum values prior to applying them to a prediction model. We extend the proposed approach and factorize quantization by integrating different quantization step sizes. Such fused data can reduce the data to mainly concentrate on the stock price movement direction. To empirically evaluate the proposed approach for stock trend prediction, we adopt long short-term memory, deep neural network, and backpropagation neural network models and compare our prediction results with five existing approaches on several datasets using ten performance metrics. We analyze the impact of specific quantization factors and determine the individual best as well as overall best factor sizes; the results indicate a consistent performance enhancement in stock trend prediction accuracy as compared to the considered baseline methods with an improvement up to 7%. To evaluate the impact of quantization-based data fusion, we analyze time required to execute the experiments along with percentage reduction in the number of unique numeric terms. Further, these results are statistically evaluated using Wilcoxon signed-rank test. We discuss the superiority and applicability of factored quantization-based data fusion approach and conclude our work with potential future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
汉堡包应助热寂灬采纳,获得10
2秒前
思源应助maying采纳,获得10
2秒前
3秒前
hutian发布了新的文献求助10
4秒前
6秒前
Man发布了新的文献求助10
6秒前
sibo发布了新的文献求助10
6秒前
Sophiaple发布了新的文献求助10
6秒前
7秒前
火山蜗牛发布了新的文献求助10
7秒前
英姑应助天二采纳,获得10
10秒前
Singularity应助小杜小杜采纳,获得20
11秒前
lenny发布了新的文献求助10
11秒前
qly发布了新的文献求助10
12秒前
要减肥的乐双完成签到 ,获得积分10
12秒前
13秒前
研友_VZG7GZ应助hutian采纳,获得10
15秒前
朴素大米发布了新的文献求助10
15秒前
海阔光明完成签到,获得积分10
16秒前
吃瓜落后者完成签到,获得积分10
16秒前
xyang2015完成签到,获得积分10
16秒前
隐形太阳完成签到,获得积分10
17秒前
19秒前
Rae sremer完成签到,获得积分10
19秒前
科研通AI2S应助JasonNeal采纳,获得10
19秒前
热寂灬完成签到,获得积分10
22秒前
22秒前
22秒前
脑洞疼应助木木VV采纳,获得10
22秒前
今后应助笑忘书采纳,获得10
23秒前
MLB完成签到,获得积分20
23秒前
23秒前
@斤斤计较发布了新的文献求助10
24秒前
彭认真应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
25秒前
JamesPei应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得10
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248155
求助须知:如何正确求助?哪些是违规求助? 2891468
关于积分的说明 8267679
捐赠科研通 2559577
什么是DOI,文献DOI怎么找? 1388384
科研通“疑难数据库(出版商)”最低求助积分说明 650734
邀请新用户注册赠送积分活动 627687