亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Untrained deep learning-based phase retrieval for fringe projection profilometry

计算机科学 人工智能 轮廓仪 稳健性(进化) 深度学习 相位恢复 结构光三维扫描仪 一次性 转化(遗传学) 计算机视觉 投影(关系代数) 模式识别(心理学) 一致性(知识库) 相(物质) 构造(python库) 算法 数学 机械工程 数学分析 生物化学 化学 扫描仪 有机化学 傅里叶变换 表面粗糙度 工程类 基因 物理 量子力学 程序设计语言
作者
Haotian Yu,Xiaoyu Chen,Ruobing Huang,Lianfa Bai,Dongliang Zheng,Jing Han
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:164: 107483-107483 被引量:19
标识
DOI:10.1016/j.optlaseng.2023.107483
摘要

Fringe projection profilometry (FPP) based on deep learning shows potential for challenging 3-D sensing tasks, e.g., bio-medicine, reverse engineering, and face recognition, etc. Supervised deep learning has been introduced to retrieve the desired phase for the 3-D reconstruction, which relies on lots of advanced training to construct the fringe-to-phase transformation. The traditional deep learning-based method becomes unreliable for scenes that are different from the training ones, which restricts it to be applied for actual applications. In this paper, an untrained deep learning-based phase retrieval method is proposed. By adding a camera to the traditional FPP system, scene-independent physical constraints such as phase, structure and 3-D consistency are constructed to optimize the fringe-to-phase transformation. The proposed deep learning-based method can retrieve the desired phase from a single fringe pattern without advance training. Both theoretical analyses and experimental results demonstrate its accurateness and robustness. The proposed method also shows potential for single-shot 3-D sensing applications such as high-speed 3-D measurement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CJH104完成签到 ,获得积分10
刚刚
2秒前
2秒前
3秒前
没见云发布了新的文献求助10
9秒前
10秒前
14秒前
17秒前
秦时明月发布了新的文献求助10
20秒前
22秒前
26秒前
请输入昵称完成签到 ,获得积分10
28秒前
Jeongin发布了新的文献求助10
31秒前
32秒前
Freedom完成签到 ,获得积分10
37秒前
xiaobizaizhi233完成签到,获得积分10
40秒前
可乐完成签到 ,获得积分10
42秒前
42秒前
Jeongin完成签到,获得积分10
42秒前
量子星尘发布了新的文献求助10
50秒前
科目三应助OYJH采纳,获得10
1分钟前
科研兵完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
科研通AI6.1应助Okanryo采纳,获得10
1分钟前
sulin完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
如意秋珊完成签到 ,获得积分10
1分钟前
秦时明月发布了新的文献求助10
1分钟前
丁一发布了新的文献求助10
1分钟前
1分钟前
1分钟前
孙泉发布了新的文献求助10
1分钟前
pegasus0802完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755160
求助须知:如何正确求助?哪些是违规求助? 5491833
关于积分的说明 15380956
捐赠科研通 4893420
什么是DOI,文献DOI怎么找? 2632044
邀请新用户注册赠送积分活动 1579872
关于科研通互助平台的介绍 1535729