作者
Haipeng Huang,Jiange Zhang,Peng Jiang,Xiaolong Xu,Fu Huang,Binli Zhao,Xiaoming Wang,Liquan Zhou
摘要
Axitinib is emerging as a first-line combination treatment drug for metastatic renal cell carcinoma, but the acquired resistance significantly bothers the treatment efficacy. This article is to investigate the impact of fragile X mental retardation autosomal homolog 1 (FXR1) and its mechanistic involvement with Kelch-like epoxy chloropropan-associated protein 1 (KEAP1)/NF-E2-related factor 2 (Nrf2) pathway on cell resistance to axitinib in clear cell renal cell carcinoma (ccRCC). Establishment of axitinib resistance cells (786-O, Caki-1, 786-O/axitinib, or Caki-1/axitinib) was made, and the cells were then transfected with sh-FXR1, or co-transfected with sh-FXR1 and sh-KEAP1. The quantitative real-time PCR (qRT-PCR) and western blotting assays were employed to measure the expression of FXR1, KEAP1, Nrf2, LC3 II/I, Beclin 1, p62, MDR-1, and MRP-1. In addition, the binding between FXR1 and KEAP1 was verified by RNA-immunoprecipitation and RNA pull-down assays, and FXR1-dependent KEAP1 mRNA degradation was determined. Herein, FXR1 was demonstrated to be overexpressed in ccRCC cells, and showed higher expression in 786-O/axitinib and Caki-1/axitinib cells. Mechanistically, FXR1 enriched KEAP1 mRNA, and pulled downed by biotinylated KEAP1 probes. Results of RNA stability assay reveled that KEAP mRNA stability was suppressed by FXR1. Furthermore, knockdown of FXR1 promoted cell apoptosis and showed a restrained feature on cell resistance to axitinib. Of note, KEAP1 knockdown suppressed cell autophagy, oxidative stress, resistance to axitinib, and promoted apoptosis, despite FXR1 was downregulated in ccRCC cells. In conclusion, FXR1 played an encouraging role in ccRCC cell resistance to axitinib by modulating KEAP/Nrf2 pathway.