Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system

需求响应 调度(生产过程) 计算机科学 数学优化 解算器 粒子群优化 可再生能源 激励 运筹学 工程类 经济 微观经济学 程序设计语言 机器学习 电气工程 数学
作者
Longwei Yin,Jialin Lin,Houqi Dong,Yuqing Wang,Ming Zeng
出处
期刊:Energy [Elsevier BV]
卷期号:270: 126893-126893 被引量:60
标识
DOI:10.1016/j.energy.2023.126893
摘要

With the increasing uncertainty of energy supply side output, fully encouraging users to participate in demand response through different types of demand response incentive mechanisms has become one of the effective ways to deal with the uncertainty of integrated energy system operation and improve the overall energy efficiency. However, in existing studies, the coordination of uncertainty handling, optimization of demand response incentive strategies, and demand response measures at different time scales have not been adequately considered in the operation of integrated energy systems. Based on these considerations, this paper proposes a multi time-scale game optimization scheduling model for Park-level Integrated Energy System considering multiple types of demand response models. In the day-ahead stage, a Park-level Integrated Energy System optimization game scheduling model based on the demand response comprehensive incentive mechanism is established, and the uncertainty of the predicted value of distributed renewable energy and multi-type energy load was characterized based on the fuzzy chance-constrained programming method. In the intraday and real-time stages, a rolling optimization scheduling model is established with the minimum cost of Park-level Integrated Energy System operator scheduling. For the proposed model, an improved particle swarm optimization algorithm and an iterative solution strategy of CPLEX solver are introduced. Finally, the simulation results of an actual case show that the proposed model can effectively improve the Park-level Integrated Energy System operator and user economy while ensuring reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
rocket发布了新的文献求助20
5秒前
sldl完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
xiangyiyi发布了新的文献求助10
7秒前
小蘑菇应助Lily_0_o采纳,获得10
8秒前
朱文韬发布了新的文献求助10
9秒前
吴彦祖的通通完成签到 ,获得积分10
10秒前
隐形曼青应助Vintor采纳,获得10
13秒前
奋斗的凡完成签到 ,获得积分10
13秒前
小麻薯完成签到,获得积分20
13秒前
搜集达人应助程星宇采纳,获得10
14秒前
小扇完成签到,获得积分10
15秒前
和风完成签到 ,获得积分10
15秒前
0511发布了新的文献求助10
17秒前
19秒前
烟花应助123采纳,获得10
19秒前
21秒前
Desperado完成签到,获得积分20
22秒前
23秒前
Vintor发布了新的文献求助10
24秒前
MindAway完成签到,获得积分10
25秒前
Jane完成签到,获得积分10
25秒前
imcwj完成签到 ,获得积分10
25秒前
25秒前
无花果应助xiangyiyi采纳,获得10
26秒前
赘婿应助马上毕业采纳,获得10
27秒前
28秒前
29秒前
汉堡包应助fxy采纳,获得10
33秒前
33秒前
Owen应助启航采纳,获得10
34秒前
俭朴青烟完成签到,获得积分20
35秒前
38秒前
emmm发布了新的文献求助10
39秒前
lzs完成签到,获得积分10
39秒前
0511完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541