Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system

需求响应 调度(生产过程) 计算机科学 数学优化 解算器 粒子群优化 可再生能源 激励 响应时间 运筹学 工程类 经济 电气工程 机器学习 计算机图形学(图像) 微观经济学 程序设计语言 数学
作者
Liying Wang,Jialin Lin,Houqi Dong,Yuqing Wang,Ming Zeng
出处
期刊:Energy [Elsevier]
卷期号:270: 126893-126893 被引量:164
标识
DOI:10.1016/j.energy.2023.126893
摘要

With the increasing uncertainty of energy supply side output, fully encouraging users to participate in demand response through different types of demand response incentive mechanisms has become one of the effective ways to deal with the uncertainty of integrated energy system operation and improve the overall energy efficiency. However, in existing studies, the coordination of uncertainty handling, optimization of demand response incentive strategies, and demand response measures at different time scales have not been adequately considered in the operation of integrated energy systems. Based on these considerations, this paper proposes a multi time-scale game optimization scheduling model for Park-level Integrated Energy System considering multiple types of demand response models. In the day-ahead stage, a Park-level Integrated Energy System optimization game scheduling model based on the demand response comprehensive incentive mechanism is established, and the uncertainty of the predicted value of distributed renewable energy and multi-type energy load was characterized based on the fuzzy chance-constrained programming method. In the intraday and real-time stages, a rolling optimization scheduling model is established with the minimum cost of Park-level Integrated Energy System operator scheduling. For the proposed model, an improved particle swarm optimization algorithm and an iterative solution strategy of CPLEX solver are introduced. Finally, the simulation results of an actual case show that the proposed model can effectively improve the Park-level Integrated Energy System operator and user economy while ensuring reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助孙一采纳,获得10
1秒前
1秒前
靓丽的悒发布了新的文献求助10
2秒前
minever白完成签到,获得积分10
2秒前
3秒前
李健应助鲸鱼采纳,获得10
3秒前
李健的小迷弟应助IMYUYUYU采纳,获得10
3秒前
5秒前
5秒前
6秒前
星期一发布了新的文献求助10
6秒前
兔兔要睡觉完成签到,获得积分10
6秒前
隐形曼青应助飞快的冬天采纳,获得10
6秒前
小杭76应助unique采纳,获得10
7秒前
7秒前
天真的万声完成签到,获得积分10
8秒前
9秒前
9秒前
温暖砖家完成签到 ,获得积分10
10秒前
情怀应助陈星珂采纳,获得10
10秒前
10秒前
RX信完成签到 ,获得积分10
10秒前
忌辛辣发布了新的文献求助200
10秒前
科研通AI6应助F_echo采纳,获得30
11秒前
情怀应助鲤鱼笑南采纳,获得10
11秒前
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
轻松的雨竹完成签到,获得积分10
14秒前
y13333发布了新的文献求助20
14秒前
15秒前
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431074
求助须知:如何正确求助?哪些是违规求助? 4544193
关于积分的说明 14191176
捐赠科研通 4462733
什么是DOI,文献DOI怎么找? 2446624
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414596