Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system

需求响应 调度(生产过程) 计算机科学 数学优化 解算器 粒子群优化 可再生能源 激励 运筹学 工程类 经济 微观经济学 程序设计语言 机器学习 电气工程 数学
作者
Longwei Yin,Jialin Lin,Houqi Dong,Yuqing Wang,Ming Zeng
出处
期刊:Energy [Elsevier]
卷期号:270: 126893-126893 被引量:60
标识
DOI:10.1016/j.energy.2023.126893
摘要

With the increasing uncertainty of energy supply side output, fully encouraging users to participate in demand response through different types of demand response incentive mechanisms has become one of the effective ways to deal with the uncertainty of integrated energy system operation and improve the overall energy efficiency. However, in existing studies, the coordination of uncertainty handling, optimization of demand response incentive strategies, and demand response measures at different time scales have not been adequately considered in the operation of integrated energy systems. Based on these considerations, this paper proposes a multi time-scale game optimization scheduling model for Park-level Integrated Energy System considering multiple types of demand response models. In the day-ahead stage, a Park-level Integrated Energy System optimization game scheduling model based on the demand response comprehensive incentive mechanism is established, and the uncertainty of the predicted value of distributed renewable energy and multi-type energy load was characterized based on the fuzzy chance-constrained programming method. In the intraday and real-time stages, a rolling optimization scheduling model is established with the minimum cost of Park-level Integrated Energy System operator scheduling. For the proposed model, an improved particle swarm optimization algorithm and an iterative solution strategy of CPLEX solver are introduced. Finally, the simulation results of an actual case show that the proposed model can effectively improve the Park-level Integrated Energy System operator and user economy while ensuring reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
倩倩完成签到 ,获得积分10
1秒前
1秒前
贝利亚完成签到,获得积分10
1秒前
1秒前
csdv发布了新的文献求助10
1秒前
坚强乌龟完成签到,获得积分10
1秒前
澎鱼盐完成签到,获得积分10
2秒前
2秒前
平淡小丸子完成签到 ,获得积分10
2秒前
吃花生酱的猫完成签到,获得积分10
2秒前
3秒前
Vesper完成签到,获得积分10
3秒前
拼搏亦松发布了新的文献求助10
3秒前
无花果应助hu970采纳,获得10
4秒前
kk2024应助今天真暖采纳,获得20
4秒前
Brandy完成签到,获得积分10
4秒前
春景当思完成签到,获得积分10
4秒前
lyon发布了新的文献求助10
4秒前
5秒前
背后的广山完成签到,获得积分10
5秒前
Jiancui发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
体贴啤酒完成签到,获得积分10
6秒前
Ll发布了新的文献求助10
6秒前
7秒前
JOJO完成签到,获得积分10
7秒前
杭新晴完成签到 ,获得积分10
7秒前
淡然的日记本完成签到,获得积分10
7秒前
南方姑娘完成签到,获得积分10
8秒前
虚拟莫茗发布了新的文献求助20
8秒前
8秒前
9秒前
威武忆山完成签到 ,获得积分10
9秒前
凡而不庸举报有魅力发卡求助涉嫌违规
9秒前
壮观的访枫完成签到,获得积分10
9秒前
富婆嘉嘉子完成签到,获得积分10
9秒前
Healer完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672