Facile preparation of three-dimensional hierarchical MgO microstructures for non-enzymatic glucose sensor

材料科学 结晶度 微观结构 氧化剂 煅烧 检出限 电化学 化学工程 电极 氧化还原 安培法 选择性 比表面积 纳米技术 分析化学(期刊) 化学 冶金 物理化学 复合材料 色谱法 催化作用 生物化学 有机化学 工程类
作者
Muhammad Hilal,Jeong In Han
出处
期刊:Applied Surface Science [Elsevier]
卷期号:619: 156750-156750 被引量:5
标识
DOI:10.1016/j.apsusc.2023.156750
摘要

Rational structural design plays a vital role in the continuous development of electrochemical activity in glucose-oxidizing materials, which is crucial for achieving high-performance glucose sensing. Herein, a three-dimensional (3D) MgO microstructure was prepared using the hydrothermal treatment of precursors and inert gas calcination of hydrothermally produced nuclei. This 3D-MgO consisted of nanosheets with respective thicknesses and side lengths of ∼ 50 nm and ∼ 10 µm that were strongly tied together. Structural analysis demonstrated the structure’s high crystallinity and large surface area of 79.82 m2∙g−1. Moreover, Mott-Schokky and valance band analyses revealed that 3D-MgO exhibited a suitable band-edge potential for redox activity, with conduction and valence band potentials of − 2.15 and 2.29 eV, respectively. Based on these excellent characteristics, the 3D MgO was utilized as a nonenzymatic glucose-oxidizing electrode, where it exhibited high sensitivity (198 µA∙mM−1∙cm−2), a quick response time (10 s), low detection limit (0.41 µM), and a wide linear range (0.04–6.85 mM). Furthermore, it exhibited superb selectivity, repeatability, reproducibility with long-term high chemical stability, and a successful response to the glucose content present in human saliva. Due to these excellent material properties and outstanding performance in terms of glucose detection, 3D-MgO is a strong potential candidate for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宸哥完成签到,获得积分10
刚刚
眯眯眼的衬衫应助yanyan采纳,获得10
2秒前
Yue完成签到 ,获得积分10
2秒前
无限的含羞草完成签到,获得积分10
3秒前
大个应助WZ0904采纳,获得10
4秒前
Sofia发布了新的文献求助60
7秒前
8秒前
橘子姐姐发布了新的文献求助10
9秒前
yanyan完成签到,获得积分10
10秒前
TT完成签到,获得积分10
11秒前
11秒前
了然完成签到 ,获得积分10
12秒前
jxp完成签到,获得积分10
12秒前
jojo完成签到 ,获得积分10
13秒前
13秒前
勤劳落雁完成签到 ,获得积分10
13秒前
16秒前
爆米花应助科研通管家采纳,获得30
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
16秒前
17秒前
田様应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
RC_Wang应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
赘婿应助Quzhengkai采纳,获得10
17秒前
sutharsons应助科研通管家采纳,获得30
17秒前
李爱国应助科研通管家采纳,获得30
18秒前
18秒前
18秒前
调研昵称发布了新的文献求助10
18秒前
CodeCraft应助清新的苑博采纳,获得10
19秒前
所所应助Chen采纳,获得10
20秒前
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808