The Use of Artificial Intelligence for the Prediction of Periprosthetic Joint Infection Following Aseptic Revision Total Knee Arthroplasty

医学 假体周围 接收机工作特性 关节置换术 无菌处理 外科 回顾性队列研究 机器学习 内科学 计算机科学
作者
Christian Klemt,Ingwon Yeo,Mike Harvey,Jillian C. Burns,Christopher M. Melnic,Akachimere Uzosike,Young‐Min Kwon
出处
期刊:Journal of Knee Surgery [Thieme Medical Publishers (Germany)]
卷期号:37 (02): 158-166 被引量:13
标识
DOI:10.1055/s-0043-1761259
摘要

Abstract Periprosthetic joint infection (PJI) following revision total knee arthroplasty (TKA) for aseptic failure is associated with poor outcomes, patient morbidity, and high health care expenditures. The aim of this study was to develop novel machine learning algorithms for the prediction of PJI following revision TKA for patients with aseptic indications for revision surgery. A single-institution database consisting of 1,432 consecutive revision TKA patients with aseptic etiologies was retrospectively identified. The patient cohort included 208 patients (14.5%) who underwent re-revision surgery for PJI. Three machine learning algorithms (artificial neural networks, support vector machines, k-nearest neighbors) were developed to predict this outcome and these models were assessed by discrimination, calibration, and decision curve analysis. This is a retrospective study. Among the three machine learning models, the neural network model achieved the best performance across discrimination (area under the receiver operating characteristic curve = 0.78), calibration, and decision curve analysis. The strongest predictors for PJI following revision TKA for aseptic reasons were prior open procedure prior to revision surgery, drug abuse, obesity, and diabetes. This study utilized machine learning as a tool for the prediction of PJI following revision TKA for aseptic failure with excellent performance. The validated machine learning models can aid surgeons in patient-specific risk stratifying to assist in preoperative counseling and clinical decision making for patients undergoing aseptic revision TKA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SWL完成签到,获得积分10
刚刚
yuanzhennihao完成签到,获得积分10
1秒前
星辰大海应助跳跃馒头采纳,获得10
1秒前
Ava应助yuyu采纳,获得10
2秒前
所所应助mingming采纳,获得10
2秒前
科目三应助学术探索者采纳,获得30
3秒前
熊宇发布了新的文献求助10
3秒前
CodeCraft应助来轩采纳,获得10
3秒前
大白发布了新的文献求助10
4秒前
4秒前
苏信怜发布了新的文献求助10
4秒前
可爱的函函应助yuanzhennihao采纳,获得10
5秒前
5秒前
edisonyan发布了新的文献求助10
5秒前
白术发布了新的文献求助10
5秒前
机智的思远完成签到,获得积分10
5秒前
sai完成签到,获得积分10
5秒前
淡淡冰薇完成签到,获得积分10
6秒前
6秒前
7秒前
嘟嘟完成签到,获得积分10
7秒前
wweq发布了新的文献求助10
8秒前
ljj完成签到,获得积分10
8秒前
Silentjj84发布了新的文献求助10
9秒前
sunnan0321完成签到,获得积分10
9秒前
10秒前
ww完成签到,获得积分20
10秒前
10秒前
10秒前
CK完成签到,获得积分10
10秒前
是漏漏呀发布了新的文献求助10
11秒前
11秒前
hh完成签到,获得积分10
11秒前
12秒前
英姑应助唐唐采纳,获得10
12秒前
yuuuke完成签到,获得积分10
12秒前
淡定的不言完成签到 ,获得积分10
12秒前
壳壳13完成签到 ,获得积分10
14秒前
桐桐应助故意的凡雁采纳,获得10
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707