The Use of Artificial Intelligence for the Prediction of Periprosthetic Joint Infection Following Aseptic Revision Total Knee Arthroplasty

医学 假体周围 接收机工作特性 关节置换术 无菌处理 外科 回顾性队列研究 机器学习 内科学 计算机科学
作者
Christian Klemt,Ingwon Yeo,Mike Harvey,Jillian C. Burns,Christopher M. Melnic,Akachimere Uzosike,Young‐Min Kwon
出处
期刊:Journal of Knee Surgery [Thieme Medical Publishers (Germany)]
卷期号:37 (02): 158-166 被引量:13
标识
DOI:10.1055/s-0043-1761259
摘要

Abstract Periprosthetic joint infection (PJI) following revision total knee arthroplasty (TKA) for aseptic failure is associated with poor outcomes, patient morbidity, and high health care expenditures. The aim of this study was to develop novel machine learning algorithms for the prediction of PJI following revision TKA for patients with aseptic indications for revision surgery. A single-institution database consisting of 1,432 consecutive revision TKA patients with aseptic etiologies was retrospectively identified. The patient cohort included 208 patients (14.5%) who underwent re-revision surgery for PJI. Three machine learning algorithms (artificial neural networks, support vector machines, k-nearest neighbors) were developed to predict this outcome and these models were assessed by discrimination, calibration, and decision curve analysis. This is a retrospective study. Among the three machine learning models, the neural network model achieved the best performance across discrimination (area under the receiver operating characteristic curve = 0.78), calibration, and decision curve analysis. The strongest predictors for PJI following revision TKA for aseptic reasons were prior open procedure prior to revision surgery, drug abuse, obesity, and diabetes. This study utilized machine learning as a tool for the prediction of PJI following revision TKA for aseptic failure with excellent performance. The validated machine learning models can aid surgeons in patient-specific risk stratifying to assist in preoperative counseling and clinical decision making for patients undergoing aseptic revision TKA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxx完成签到,获得积分10
刚刚
刚刚
1秒前
淡定静白完成签到,获得积分10
1秒前
屈初雪发布了新的文献求助10
2秒前
叫我益达完成签到,获得积分10
2秒前
传奇3应助张玉建采纳,获得10
2秒前
2秒前
高贵的思天完成签到,获得积分10
2秒前
脑洞疼应助Mininine采纳,获得10
2秒前
咿呀发布了新的文献求助10
2秒前
爱吃烤肉的兔子完成签到,获得积分20
3秒前
3秒前
阿雷完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
ww完成签到,获得积分10
3秒前
4秒前
LLLiXXXXXiN发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
汉堡包应助gy采纳,获得10
5秒前
5秒前
wlm发布了新的文献求助10
5秒前
飞羽发布了新的文献求助10
5秒前
6秒前
油条狗发布了新的文献求助10
6秒前
红豆抹茶完成签到,获得积分10
7秒前
7秒前
二二发布了新的文献求助10
7秒前
7秒前
科研通AI2S应助半夜炒茄子采纳,获得10
8秒前
眯眯眼的笑完成签到,获得积分10
8秒前
Neo完成签到,获得积分10
8秒前
寒冷的天亦完成签到,获得积分10
8秒前
小羊医生发布了新的文献求助10
9秒前
9秒前
冰冰子完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615406
求助须知:如何正确求助?哪些是违规求助? 4019207
关于积分的说明 12441329
捐赠科研通 3702203
什么是DOI,文献DOI怎么找? 2041500
邀请新用户注册赠送积分活动 1074170
科研通“疑难数据库(出版商)”最低求助积分说明 957802