The Use of Artificial Intelligence for the Prediction of Periprosthetic Joint Infection Following Aseptic Revision Total Knee Arthroplasty

医学 假体周围 接收机工作特性 关节置换术 无菌处理 外科 回顾性队列研究 机器学习 内科学 计算机科学
作者
Christian Klemt,Ingwon Yeo,Mike Harvey,Jillian C. Burns,Christopher M. Melnic,Akachimere Uzosike,Young‐Min Kwon
出处
期刊:Journal of Knee Surgery [Georg Thieme Verlag KG]
卷期号:37 (02): 158-166 被引量:13
标识
DOI:10.1055/s-0043-1761259
摘要

Abstract Periprosthetic joint infection (PJI) following revision total knee arthroplasty (TKA) for aseptic failure is associated with poor outcomes, patient morbidity, and high health care expenditures. The aim of this study was to develop novel machine learning algorithms for the prediction of PJI following revision TKA for patients with aseptic indications for revision surgery. A single-institution database consisting of 1,432 consecutive revision TKA patients with aseptic etiologies was retrospectively identified. The patient cohort included 208 patients (14.5%) who underwent re-revision surgery for PJI. Three machine learning algorithms (artificial neural networks, support vector machines, k-nearest neighbors) were developed to predict this outcome and these models were assessed by discrimination, calibration, and decision curve analysis. This is a retrospective study. Among the three machine learning models, the neural network model achieved the best performance across discrimination (area under the receiver operating characteristic curve = 0.78), calibration, and decision curve analysis. The strongest predictors for PJI following revision TKA for aseptic reasons were prior open procedure prior to revision surgery, drug abuse, obesity, and diabetes. This study utilized machine learning as a tool for the prediction of PJI following revision TKA for aseptic failure with excellent performance. The validated machine learning models can aid surgeons in patient-specific risk stratifying to assist in preoperative counseling and clinical decision making for patients undergoing aseptic revision TKA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪小小完成签到,获得积分10
刚刚
小二郎应助蛋挞大王采纳,获得10
刚刚
刚刚
zedhumble完成签到,获得积分10
刚刚
余裕发布了新的文献求助10
1秒前
1秒前
摆烂王子发布了新的文献求助10
1秒前
lin完成签到,获得积分10
2秒前
3秒前
CodeCraft应助111采纳,获得20
3秒前
打工人发布了新的文献求助10
4秒前
小俊完成签到,获得积分10
4秒前
yuan完成签到 ,获得积分10
6秒前
6秒前
JamesPei应助Deq采纳,获得40
6秒前
sikaixue发布了新的文献求助10
6秒前
斯文败类应助nasya采纳,获得10
6秒前
yuanwei发布了新的文献求助10
7秒前
8秒前
idannn完成签到,获得积分10
9秒前
ling完成签到,获得积分10
9秒前
10秒前
凡城完成签到,获得积分10
10秒前
鲤鱼鸽子发布了新的文献求助10
10秒前
11秒前
大欣发布了新的文献求助10
11秒前
今后应助清脆的问枫采纳,获得10
12秒前
小杭76应助mei采纳,获得10
12秒前
13秒前
183完成签到,获得积分10
13秒前
hongbb发布了新的文献求助10
13秒前
凡千灵溪完成签到 ,获得积分10
13秒前
SciGPT应助ywl采纳,获得10
14秒前
15秒前
15秒前
zzz发布了新的文献求助10
15秒前
李健应助Free采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396892
求助须知:如何正确求助?哪些是违规求助? 4517252
关于积分的说明 14062680
捐赠科研通 4429000
什么是DOI,文献DOI怎么找? 2432179
邀请新用户注册赠送积分活动 1424688
关于科研通互助平台的介绍 1403672