The Use of Artificial Intelligence for the Prediction of Periprosthetic Joint Infection Following Aseptic Revision Total Knee Arthroplasty

医学 假体周围 接收机工作特性 关节置换术 无菌处理 外科 回顾性队列研究 机器学习 内科学 计算机科学
作者
Christian Klemt,Ingwon Yeo,Mike Harvey,Jillian C. Burns,Christopher M. Melnic,Akachimere Uzosike,Young‐Min Kwon
出处
期刊:Journal of Knee Surgery [Georg Thieme Verlag KG]
卷期号:37 (02): 158-166 被引量:13
标识
DOI:10.1055/s-0043-1761259
摘要

Abstract Periprosthetic joint infection (PJI) following revision total knee arthroplasty (TKA) for aseptic failure is associated with poor outcomes, patient morbidity, and high health care expenditures. The aim of this study was to develop novel machine learning algorithms for the prediction of PJI following revision TKA for patients with aseptic indications for revision surgery. A single-institution database consisting of 1,432 consecutive revision TKA patients with aseptic etiologies was retrospectively identified. The patient cohort included 208 patients (14.5%) who underwent re-revision surgery for PJI. Three machine learning algorithms (artificial neural networks, support vector machines, k-nearest neighbors) were developed to predict this outcome and these models were assessed by discrimination, calibration, and decision curve analysis. This is a retrospective study. Among the three machine learning models, the neural network model achieved the best performance across discrimination (area under the receiver operating characteristic curve = 0.78), calibration, and decision curve analysis. The strongest predictors for PJI following revision TKA for aseptic reasons were prior open procedure prior to revision surgery, drug abuse, obesity, and diabetes. This study utilized machine learning as a tool for the prediction of PJI following revision TKA for aseptic failure with excellent performance. The validated machine learning models can aid surgeons in patient-specific risk stratifying to assist in preoperative counseling and clinical decision making for patients undergoing aseptic revision TKA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Barkdog完成签到,获得积分10
1秒前
agicmoon发布了新的文献求助10
1秒前
HH发布了新的文献求助10
1秒前
lucky完成签到 ,获得积分10
1秒前
Richard发布了新的文献求助10
2秒前
Vermouth完成签到,获得积分10
3秒前
无心的尔阳完成签到,获得积分10
3秒前
爆米花应助子清采纳,获得10
4秒前
HK发布了新的文献求助10
4秒前
hang完成签到,获得积分10
5秒前
5秒前
6秒前
浮游应助苗玉采纳,获得10
6秒前
7秒前
7秒前
胡东东完成签到,获得积分10
8秒前
坦率完成签到,获得积分10
8秒前
失眠的夜关注了科研通微信公众号
8秒前
9秒前
xiaodusb完成签到,获得积分10
9秒前
高兴绿柳发布了新的文献求助10
9秒前
橘屋顶发布了新的文献求助10
9秒前
烟花应助yang采纳,获得10
9秒前
11秒前
bfz50完成签到,获得积分10
11秒前
工藤新一发布了新的文献求助10
11秒前
Jenny完成签到,获得积分10
12秒前
12秒前
黄上权完成签到 ,获得积分10
12秒前
COCO完成签到 ,获得积分10
12秒前
12秒前
科研小弟完成签到,获得积分10
13秒前
夏侯觅风完成签到,获得积分10
14秒前
14秒前
15秒前
千影发布了新的文献求助10
17秒前
17秒前
涂文波完成签到,获得积分10
18秒前
可乐SAMA完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419305
求助须知:如何正确求助?哪些是违规求助? 4534635
关于积分的说明 14145936
捐赠科研通 4451213
什么是DOI,文献DOI怎么找? 2441631
邀请新用户注册赠送积分活动 1433223
关于科研通互助平台的介绍 1410533