The Use of Artificial Intelligence for the Prediction of Periprosthetic Joint Infection Following Aseptic Revision Total Knee Arthroplasty

医学 假体周围 接收机工作特性 关节置换术 无菌处理 外科 回顾性队列研究 机器学习 内科学 计算机科学
作者
Christian Klemt,Ingwon Yeo,Mike Harvey,Jillian C. Burns,Christopher M. Melnic,Akachimere Uzosike,Young‐Min Kwon
出处
期刊:Journal of Knee Surgery [Georg Thieme Verlag KG]
卷期号:37 (02): 158-166 被引量:9
标识
DOI:10.1055/s-0043-1761259
摘要

Abstract Periprosthetic joint infection (PJI) following revision total knee arthroplasty (TKA) for aseptic failure is associated with poor outcomes, patient morbidity, and high health care expenditures. The aim of this study was to develop novel machine learning algorithms for the prediction of PJI following revision TKA for patients with aseptic indications for revision surgery. A single-institution database consisting of 1,432 consecutive revision TKA patients with aseptic etiologies was retrospectively identified. The patient cohort included 208 patients (14.5%) who underwent re-revision surgery for PJI. Three machine learning algorithms (artificial neural networks, support vector machines, k-nearest neighbors) were developed to predict this outcome and these models were assessed by discrimination, calibration, and decision curve analysis. This is a retrospective study. Among the three machine learning models, the neural network model achieved the best performance across discrimination (area under the receiver operating characteristic curve = 0.78), calibration, and decision curve analysis. The strongest predictors for PJI following revision TKA for aseptic reasons were prior open procedure prior to revision surgery, drug abuse, obesity, and diabetes. This study utilized machine learning as a tool for the prediction of PJI following revision TKA for aseptic failure with excellent performance. The validated machine learning models can aid surgeons in patient-specific risk stratifying to assist in preoperative counseling and clinical decision making for patients undergoing aseptic revision TKA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白冷之发布了新的文献求助10
1秒前
李健的粉丝团团长应助hhhh采纳,获得10
1秒前
小虾米完成签到,获得积分10
2秒前
111发布了新的文献求助10
2秒前
细心的凌香完成签到,获得积分10
2秒前
lijingwen完成签到,获得积分20
3秒前
无限秋天完成签到 ,获得积分10
3秒前
3秒前
jia发布了新的文献求助10
4秒前
黄花发布了新的文献求助30
4秒前
4秒前
机智的思远完成签到 ,获得积分10
4秒前
biomds完成签到,获得积分10
4秒前
风起人散完成签到,获得积分10
4秒前
干亿先完成签到 ,获得积分10
5秒前
ww完成签到,获得积分10
5秒前
5秒前
6秒前
混子博士完成签到,获得积分10
6秒前
6秒前
7秒前
W若颖发布了新的文献求助10
7秒前
乐观白桃应助jessie采纳,获得10
7秒前
合适紫霜发布了新的文献求助10
7秒前
7秒前
Waaly完成签到,获得积分10
8秒前
dailyyang完成签到,获得积分10
8秒前
8秒前
可爱的大白菜真实的钥匙完成签到 ,获得积分10
8秒前
9秒前
王晓蕾完成签到,获得积分10
9秒前
见与不见完成签到,获得积分10
9秒前
9秒前
青苔发布了新的文献求助10
10秒前
5年科研3年毕业完成签到,获得积分10
10秒前
clyhg完成签到,获得积分10
10秒前
joyce完成签到,获得积分10
10秒前
务实的焦发布了新的文献求助10
10秒前
10秒前
8464368完成签到,获得积分10
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167605
求助须知:如何正确求助?哪些是违规求助? 2819067
关于积分的说明 7924710
捐赠科研通 2478949
什么是DOI,文献DOI怎么找? 1320553
科研通“疑难数据库(出版商)”最低求助积分说明 632821
版权声明 602443