A Part-based Deep Learning Network for identifying individual crabs using abdomen images

人工智能 腹部 十足目 渔业 深度学习 计算机科学 生物 甲壳动物 解剖
作者
Chenjie Wu,Zhijun Xie,Kewei Chen,Ce Shi,Yangfang Ye,Xin Yu,Roozbeh Zarei,Guangyan Huang
出处
期刊:Frontiers in Marine Science [Frontiers Media SA]
卷期号:10 被引量:3
标识
DOI:10.3389/fmars.2023.1093542
摘要

Crabs, such as swimming crabs and mud crabs, are famous for their high nutritional value but are difficult to preserve. Thus, the traceability of crabs is vital for food safety. Existing deep-learning methods can be applied to identify individual crabs. However, there is no previous study that used abdomen images to identify individual crabs. In this paper, we provide a novel Part-based Deep Learning Network (PDN) to reliably identify an individual crab from its abdomen images captured under various conditions. In our PDN, we developed three non-overlapping and three overlapping partitions strategies of the abdomen image and further designed a part attention block. A swimming crab (Crab-201) dataset with the abdomen images of 201 swimming crabs and a more complex mud crab dataset (Crab-146) were collected to train and test the proposed PDN. Experimental results show that the proposed PDN using the overlapping partition strategy is better than the non-overlapping partition strategy. The edge texture of the abdomen has more identifiable features than the sulciform texture of the lower part of the abdomen. It also demonstrates that the proposed PDN_OS3, which emphasizes the edge texture of the abdomen with overlapping partition strategies, is more reliable and accurate than the counterpart methods to identify an individual crab.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mmmmmyq发布了新的文献求助10
1秒前
茨恩层完成签到,获得积分10
1秒前
chengzhiheng发布了新的文献求助30
1秒前
独特的夜阑完成签到 ,获得积分10
1秒前
shen关注了科研通微信公众号
4秒前
量子星尘发布了新的文献求助10
4秒前
Kidmaxxx发布了新的文献求助10
5秒前
科研通AI6应助嘚嘚嘚采纳,获得10
5秒前
阿巴阿巴阿巴完成签到,获得积分10
6秒前
半月悠然完成签到,获得积分10
6秒前
6秒前
善学以致用应助LIAN采纳,获得10
8秒前
8秒前
9秒前
js完成签到,获得积分10
9秒前
9秒前
刘兆亮完成签到 ,获得积分10
10秒前
顾矜应助Wanna采纳,获得10
10秒前
科研通AI6应助chengzhiheng采纳,获得30
10秒前
10秒前
10秒前
一口袋的风完成签到,获得积分10
11秒前
李爱国应助过勇采纳,获得10
12秒前
mwt0713发布了新的文献求助10
12秒前
12秒前
13秒前
完美世界应助科研通管家采纳,获得30
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
xxfsx应助科研通管家采纳,获得20
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
碧蓝靳完成签到,获得积分10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
lin发布了新的文献求助10
14秒前
15秒前
15秒前
顾矜应助一个兜兜采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469451
求助须知:如何正确求助?哪些是违规求助? 4572568
关于积分的说明 14336194
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465076
邀请新用户注册赠送积分活动 1453596
关于科研通互助平台的介绍 1428091