A Part-based Deep Learning Network for identifying individual crabs using abdomen images

人工智能 腹部 十足目 渔业 深度学习 计算机科学 生物 甲壳动物 解剖
作者
Chenjie Wu,Zhijun Xie,Kewei Chen,Ce Shi,Yangfang Ye,Xin Yu,Roozbeh Zarei,Guangyan Huang
出处
期刊:Frontiers in Marine Science [Frontiers Media SA]
卷期号:10 被引量:3
标识
DOI:10.3389/fmars.2023.1093542
摘要

Crabs, such as swimming crabs and mud crabs, are famous for their high nutritional value but are difficult to preserve. Thus, the traceability of crabs is vital for food safety. Existing deep-learning methods can be applied to identify individual crabs. However, there is no previous study that used abdomen images to identify individual crabs. In this paper, we provide a novel Part-based Deep Learning Network (PDN) to reliably identify an individual crab from its abdomen images captured under various conditions. In our PDN, we developed three non-overlapping and three overlapping partitions strategies of the abdomen image and further designed a part attention block. A swimming crab (Crab-201) dataset with the abdomen images of 201 swimming crabs and a more complex mud crab dataset (Crab-146) were collected to train and test the proposed PDN. Experimental results show that the proposed PDN using the overlapping partition strategy is better than the non-overlapping partition strategy. The edge texture of the abdomen has more identifiable features than the sulciform texture of the lower part of the abdomen. It also demonstrates that the proposed PDN_OS3, which emphasizes the edge texture of the abdomen with overlapping partition strategies, is more reliable and accurate than the counterpart methods to identify an individual crab.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyc发布了新的文献求助10
刚刚
刚刚
1秒前
幸运星完成签到,获得积分10
1秒前
欣喜眼神完成签到,获得积分10
2秒前
星辰大海应助labxgr采纳,获得10
4秒前
4秒前
欣喜眼神发布了新的文献求助10
5秒前
Imstemcell完成签到,获得积分10
6秒前
Cryer2401发布了新的文献求助10
6秒前
Wang完成签到,获得积分10
7秒前
小二郎应助zyc采纳,获得10
7秒前
7秒前
10秒前
大个应助欣喜眼神采纳,获得10
10秒前
莲蓬完成签到,获得积分10
10秒前
冷傲的山菡完成签到,获得积分10
10秒前
10秒前
Cryer2401完成签到,获得积分10
10秒前
111111111发布了新的文献求助10
10秒前
11秒前
董晨颖完成签到 ,获得积分10
11秒前
思源应助王木木采纳,获得10
12秒前
paopaolalala完成签到,获得积分10
14秒前
16秒前
17秒前
Chenzza完成签到,获得积分10
17秒前
安然发布了新的文献求助10
18秒前
20秒前
36456657应助daisy采纳,获得10
20秒前
20秒前
申蕾发布了新的文献求助10
21秒前
111111111完成签到,获得积分20
22秒前
冷傲的荧荧完成签到,获得积分10
22秒前
jnoker完成签到,获得积分10
22秒前
weige完成签到,获得积分10
22秒前
柿子吖发布了新的文献求助10
22秒前
小张完成签到 ,获得积分10
22秒前
在水一方应助quanquan采纳,获得10
23秒前
hzxy_lyt应助kk采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312341
求助须知:如何正确求助?哪些是违规求助? 2944981
关于积分的说明 8522464
捐赠科研通 2620767
什么是DOI,文献DOI怎么找? 1433057
科研通“疑难数据库(出版商)”最低求助积分说明 664824
邀请新用户注册赠送积分活动 650187