A Part-based Deep Learning Network for identifying individual crabs using abdomen images

人工智能 腹部 十足目 渔业 深度学习 计算机科学 生物 甲壳动物 解剖
作者
Chenjie Wu,Zhijun Xie,Kewei Chen,Ce Shi,Yangfang Ye,Xin Yu,Roozbeh Zarei,Guangyan Huang
出处
期刊:Frontiers in Marine Science [Frontiers Media SA]
卷期号:10 被引量:3
标识
DOI:10.3389/fmars.2023.1093542
摘要

Crabs, such as swimming crabs and mud crabs, are famous for their high nutritional value but are difficult to preserve. Thus, the traceability of crabs is vital for food safety. Existing deep-learning methods can be applied to identify individual crabs. However, there is no previous study that used abdomen images to identify individual crabs. In this paper, we provide a novel Part-based Deep Learning Network (PDN) to reliably identify an individual crab from its abdomen images captured under various conditions. In our PDN, we developed three non-overlapping and three overlapping partitions strategies of the abdomen image and further designed a part attention block. A swimming crab (Crab-201) dataset with the abdomen images of 201 swimming crabs and a more complex mud crab dataset (Crab-146) were collected to train and test the proposed PDN. Experimental results show that the proposed PDN using the overlapping partition strategy is better than the non-overlapping partition strategy. The edge texture of the abdomen has more identifiable features than the sulciform texture of the lower part of the abdomen. It also demonstrates that the proposed PDN_OS3, which emphasizes the edge texture of the abdomen with overlapping partition strategies, is more reliable and accurate than the counterpart methods to identify an individual crab.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
林白发布了新的文献求助30
刚刚
刚刚
刚刚
刚刚
深情安青应助createup采纳,获得10
1秒前
1秒前
面条大王发布了新的文献求助10
1秒前
2秒前
lxzhou发布了新的文献求助10
3秒前
叮当完成签到,获得积分10
4秒前
不良人发布了新的文献求助10
4秒前
161319141发布了新的文献求助10
5秒前
戴眼镜的山人完成签到,获得积分10
5秒前
5秒前
lami123完成签到,获得积分10
5秒前
粗暴的坤发布了新的文献求助10
5秒前
6秒前
墨翟完成签到,获得积分10
6秒前
7秒前
斯文败类应助好旺采纳,获得30
7秒前
汉堡包应助陈思采纳,获得10
7秒前
yyc应助法兰克福人采纳,获得10
8秒前
852应助wuliqun采纳,获得10
8秒前
8秒前
9秒前
小五发布了新的文献求助10
9秒前
9秒前
汉堡包应助来岁昭昭采纳,获得10
9秒前
Do完成签到,获得积分10
9秒前
wufang发布了新的文献求助10
10秒前
11秒前
12秒前
肉肉发布了新的文献求助10
12秒前
AIBL完成签到,获得积分10
13秒前
createup发布了新的文献求助10
13秒前
鲜艳的手链完成签到,获得积分10
14秒前
14秒前
董先生发布了新的文献求助20
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393801
求助须知:如何正确求助?哪些是违规求助? 4515106
关于积分的说明 14052738
捐赠科研通 4426288
什么是DOI,文献DOI怎么找? 2431263
邀请新用户注册赠送积分活动 1423445
关于科研通互助平台的介绍 1402505