A Part-based Deep Learning Network for identifying individual crabs using abdomen images

人工智能 腹部 十足目 渔业 深度学习 计算机科学 生物 甲壳动物 解剖
作者
Chenjie Wu,Zhijun Xie,Kewei Chen,Ce Shi,Yangfang Ye,Xin Yu,Roozbeh Zarei,Guangyan Huang
出处
期刊:Frontiers in Marine Science [Frontiers Media]
卷期号:10 被引量:3
标识
DOI:10.3389/fmars.2023.1093542
摘要

Crabs, such as swimming crabs and mud crabs, are famous for their high nutritional value but are difficult to preserve. Thus, the traceability of crabs is vital for food safety. Existing deep-learning methods can be applied to identify individual crabs. However, there is no previous study that used abdomen images to identify individual crabs. In this paper, we provide a novel Part-based Deep Learning Network (PDN) to reliably identify an individual crab from its abdomen images captured under various conditions. In our PDN, we developed three non-overlapping and three overlapping partitions strategies of the abdomen image and further designed a part attention block. A swimming crab (Crab-201) dataset with the abdomen images of 201 swimming crabs and a more complex mud crab dataset (Crab-146) were collected to train and test the proposed PDN. Experimental results show that the proposed PDN using the overlapping partition strategy is better than the non-overlapping partition strategy. The edge texture of the abdomen has more identifiable features than the sulciform texture of the lower part of the abdomen. It also demonstrates that the proposed PDN_OS3, which emphasizes the edge texture of the abdomen with overlapping partition strategies, is more reliable and accurate than the counterpart methods to identify an individual crab.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱的老三完成签到,获得积分10
刚刚
繁星若塵发布了新的文献求助30
刚刚
123free完成签到,获得积分10
1秒前
日暮里完成签到,获得积分10
2秒前
duyu完成签到 ,获得积分10
3秒前
举人烧烤发布了新的文献求助10
3秒前
情怀应助眼睛大乐松采纳,获得10
3秒前
4秒前
善学以致用应助果实采纳,获得10
5秒前
李明月完成签到,获得积分10
5秒前
心碎的黄焖鸡完成签到 ,获得积分10
5秒前
66完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
蛋蛋姐姐完成签到,获得积分10
6秒前
大力的飞莲完成签到,获得积分10
6秒前
辣椒完成签到,获得积分10
7秒前
老迟到的迎夏完成签到,获得积分10
7秒前
封志泽发布了新的文献求助50
8秒前
虚拟的姒发布了新的文献求助10
8秒前
CodeCraft应助qqwrv采纳,获得10
8秒前
9秒前
9秒前
不可以懒懒完成签到,获得积分10
9秒前
Jasper应助Bao采纳,获得10
9秒前
yu完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
11秒前
高帅发布了新的文献求助10
11秒前
文静的可仁完成签到,获得积分10
11秒前
12秒前
Slyvia2025完成签到,获得积分10
12秒前
ding应助jing2000yr采纳,获得10
13秒前
13秒前
对苏完成签到,获得积分10
13秒前
14秒前
哲_发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960721
求助须知:如何正确求助?哪些是违规求助? 3506928
关于积分的说明 11132948
捐赠科研通 3239182
什么是DOI,文献DOI怎么找? 1790081
邀请新用户注册赠送积分活动 872130
科研通“疑难数据库(出版商)”最低求助积分说明 803128