A Part-based Deep Learning Network for identifying individual crabs using abdomen images

人工智能 腹部 十足目 渔业 深度学习 计算机科学 生物 甲壳动物 解剖
作者
Chenjie Wu,Zhijun Xie,Kewei Chen,Ce Shi,Yangfang Ye,Xin Yu,Roozbeh Zarei,Guangyan Huang
出处
期刊:Frontiers in Marine Science [Frontiers Media]
卷期号:10 被引量:3
标识
DOI:10.3389/fmars.2023.1093542
摘要

Crabs, such as swimming crabs and mud crabs, are famous for their high nutritional value but are difficult to preserve. Thus, the traceability of crabs is vital for food safety. Existing deep-learning methods can be applied to identify individual crabs. However, there is no previous study that used abdomen images to identify individual crabs. In this paper, we provide a novel Part-based Deep Learning Network (PDN) to reliably identify an individual crab from its abdomen images captured under various conditions. In our PDN, we developed three non-overlapping and three overlapping partitions strategies of the abdomen image and further designed a part attention block. A swimming crab (Crab-201) dataset with the abdomen images of 201 swimming crabs and a more complex mud crab dataset (Crab-146) were collected to train and test the proposed PDN. Experimental results show that the proposed PDN using the overlapping partition strategy is better than the non-overlapping partition strategy. The edge texture of the abdomen has more identifiable features than the sulciform texture of the lower part of the abdomen. It also demonstrates that the proposed PDN_OS3, which emphasizes the edge texture of the abdomen with overlapping partition strategies, is more reliable and accurate than the counterpart methods to identify an individual crab.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助yyy采纳,获得10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助150
3秒前
哦豁发布了新的文献求助10
4秒前
5秒前
毕双洲发布了新的文献求助10
5秒前
Feren完成签到,获得积分10
6秒前
cwj完成签到,获得积分10
6秒前
彭于晏应助lau采纳,获得10
6秒前
可爱的函函应助Jiang采纳,获得10
7秒前
啾星星完成签到 ,获得积分10
7秒前
Sarah完成签到 ,获得积分10
7秒前
7秒前
vvvvvv完成签到,获得积分10
8秒前
FashionBoy应助Liuyan采纳,获得10
9秒前
9秒前
王小茗完成签到,获得积分10
9秒前
yhmi0809完成签到,获得积分10
9秒前
10秒前
10秒前
vvvvvv发布了新的文献求助20
11秒前
Lllleen完成签到 ,获得积分10
13秒前
yyy发布了新的文献求助10
13秒前
指南针指北完成签到 ,获得积分10
13秒前
青岚完成签到,获得积分10
13秒前
共享精神应助各方面采纳,获得10
14秒前
朴素的山蝶完成签到 ,获得积分10
15秒前
邓晓霞发布了新的文献求助10
16秒前
SciGPT应助vvvvvv采纳,获得10
17秒前
谢大喵应助ZXD1989采纳,获得50
17秒前
flyfish完成签到,获得积分10
17秒前
18秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
lwl完成签到,获得积分10
21秒前
hujin发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050987
求助须知:如何正确求助?哪些是违规求助? 4278559
关于积分的说明 13336877
捐赠科研通 4093666
什么是DOI,文献DOI怎么找? 2240455
邀请新用户注册赠送积分活动 1247047
关于科研通互助平台的介绍 1176052