Metal Bond Strength Regulation Enables Large-scale Synthesis of Intermetallic Nanocrystals for Practical Fuel Cells

金属间化合物 材料科学 合金 成核 退火(玻璃) 纳米晶 化学工程 催化作用 金属 烧结 纳米技术 冶金 化学 生物化学 工程类 有机化学
作者
Jiashun Liang,Yangyang Wan,Houfu Lv,Xuan Liu,Fan Lv,Shenzhou Li,Jia Xu,Zhi Deng,Junyi Liu,Siyang Zhang,Yingjun Sun,Gang Lu,Jiantao Han,Guoxiong Wang,Yunhui Huang,Shaojun Guo,Qing Li
标识
DOI:10.26434/chemrxiv-2022-0l990-v2
摘要

Structurally ordered L10-PtM (M = Fe, Co, Ni, etc) intermetallic nanocrystals (iNCs), benefiting from the chemically ordered structure and higher stability, are one of the best electrocatalysts used for PEMFC. However, their practical development is greatly plagued by the challenge that high-temperature annealing (> 700 °C) has to be used for realizing disorder-order phase transition (DOPT) due to the high activation barrier (Ea), which always leads to severe particle sintering, morphology change, and makes it highly challenging for gram-scale preparation of desirable PtM iNCs. Here, we report a general low-melting-point metal induced bond strength weakening strategy to promote DOPT of PtM (M = Ni, Fe, Cu, Zn) alloy catalysts. We demonstrate that the introduction of Sn can reduce DOPT temperature to a record-low temperature (≤ 450 °C), which enables ten-gram-scale preparation of high-performance L10-PtM iNCs. X-ray spectroscopic studies, in-situ electron microscopy and theoretical calculations reveal that the Sn-facilitated DOPT mechanism at record-low temperature involves the weakened bond strength and reduced Ea via Sn doping, the formation and fast diffusion of low coordinated surface free atom, and subsequent L10 nucleation. Most importantly, the 15% Sn-doped L10-PtNi iNCs display outstanding performance in H2-air fuel cells with a high peak power density of 1.45 W cm-2 for Pt alloy catalysts and less than 25% activity loss after 30000 cycles at a quite low cathode Pt loading amount of 0.12 mg¬Pt cm-2, representing as one of the most efficient cathodic electrocatalyst for PEMFCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
wind2631完成签到 ,获得积分10
2秒前
一一应助neu_zxy1991采纳,获得10
3秒前
清水完成签到 ,获得积分10
4秒前
丘比特应助liaoyoujiao采纳,获得10
6秒前
嘿哈完成签到,获得积分10
9秒前
10秒前
积极的随阴完成签到,获得积分10
12秒前
sunishope完成签到 ,获得积分10
14秒前
研友_n0kjPL完成签到,获得积分0
16秒前
17秒前
快乐的元正完成签到 ,获得积分10
19秒前
孤独的从彤完成签到 ,获得积分10
20秒前
千陽完成签到 ,获得积分10
23秒前
liaoyoujiao发布了新的文献求助10
24秒前
夜休2024完成签到 ,获得积分10
24秒前
25秒前
可绪kk完成签到 ,获得积分10
26秒前
陶军辉完成签到 ,获得积分10
27秒前
Skywalk满天星完成签到,获得积分10
29秒前
隐形白开水完成签到,获得积分0
32秒前
33秒前
jh完成签到 ,获得积分10
34秒前
liaoyoujiao完成签到,获得积分10
35秒前
35秒前
伍小南完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
37秒前
38秒前
明亮谷波完成签到,获得积分10
38秒前
QAQ小白完成签到,获得积分10
38秒前
二三完成签到 ,获得积分10
39秒前
安安的小板栗完成签到,获得积分10
39秒前
juliar完成签到 ,获得积分10
40秒前
40秒前
hkunyu完成签到 ,获得积分10
41秒前
清风完成签到 ,获得积分10
44秒前
昏睡的天寿完成签到,获得积分10
44秒前
50秒前
考槃在涧完成签到 ,获得积分10
50秒前
阳光的音响完成签到 ,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086