Paving the way with machine learning for seamless indoor–outdoor positioning: A survey

计算机科学 人工智能 全球导航卫星系统应用 蓝牙 深度学习 背景(考古学) 传感器融合 机器学习 混合定位系统 实时计算 全球定位系统 嵌入式系统 人机交互 无线 定位系统 电信 生物 古生物学 数学 点(几何) 几何学
作者
Manjarini Mallik,Ayan Kumar Panja,Chandreyee Chowdhury
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 126-151 被引量:25
标识
DOI:10.1016/j.inffus.2023.01.023
摘要

Seamless positioning and navigation requires an integration of outdoor and indoor positioning systems. Until recently, these systems mostly function in-silos. Though GNSS has become a standalone system for outdoors, no unified positioning modality could be found for indoor environments. Wi-Fi and Bluetooth signals are popular choices though. Increased adoption of different machine learning techniques for indoor–outdoor context detection and localization could be witnessed in the recent literature. The difficulty in precise data annotation, need for sensor fusion, the effect of different hardware configurations pose critical challenges that affect the success of indoor–outdoor (IO) positioning systems. Wireless sensor-based techniques are explicitly programmed, hence estimating locations dynamically becomes challenging. Machine learning and deep learning techniques can be used to overcome such situations and react appropriately by self-learning through experiences and actions without human intervention or reprogramming. Hence, the focus of the work is to present the readers a comprehensive survey of the applicability of machine learning and deep learning to achieve seamless navigation. The paper systematically discusses the application perspectives, research challenges, and the framework of ML (mostly) and DL (a few) based positioning approaches. The comparisons against various parameters like the technology used, the procedure applied, output metric and challenges are presented along with experimental results on benchmark datasets. The paper contributes to bridging the IO localization approaches with IO detection techniques so as to pave the way into the research domain for seamless positioning. Recent advances and hence, possible future research directions in the context of IO localization have also been articulated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
油炸绿番茄完成签到,获得积分10
1秒前
1秒前
小蘑菇应助vera采纳,获得10
1秒前
hu关闭了hu文献求助
1秒前
2秒前
2秒前
miaomiao完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
lalala应助九命猫采纳,获得10
2秒前
碧蓝诗云发布了新的文献求助10
3秒前
Nov发布了新的文献求助10
4秒前
panpan完成签到,获得积分10
4秒前
迷路小丸子完成签到,获得积分10
5秒前
山山而川发布了新的文献求助10
6秒前
tumankol发布了新的文献求助10
6秒前
华仔应助Shirky采纳,获得20
6秒前
7秒前
Wen完成签到,获得积分10
7秒前
胡泽莉完成签到,获得积分10
8秒前
vae完成签到,获得积分10
8秒前
香蕉觅云应助梦露采纳,获得10
8秒前
yuanyuan完成签到 ,获得积分10
9秒前
ypcsjj完成签到,获得积分10
9秒前
晫猗发布了新的文献求助10
11秒前
11秒前
江苏吴世勋完成签到,获得积分10
11秒前
Ava应助山山而川采纳,获得10
11秒前
12秒前
小马甲应助狂野妙菱采纳,获得10
12秒前
大龙哥886应助vae采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
跳跃的明雪完成签到 ,获得积分10
13秒前
13秒前
落寞依玉完成签到,获得积分10
13秒前
金子完成签到,获得积分10
15秒前
16秒前
风中尔蝶发布了新的文献求助30
16秒前
Fransic发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660407
求助须知:如何正确求助?哪些是违规求助? 4833752
关于积分的说明 15090568
捐赠科研通 4819045
什么是DOI,文献DOI怎么找? 2578992
邀请新用户注册赠送积分活动 1533551
关于科研通互助平台的介绍 1492304