亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Paving the way with machine learning for seamless indoor–outdoor positioning: A survey

计算机科学 人工智能 全球导航卫星系统应用 蓝牙 深度学习 背景(考古学) 传感器融合 机器学习 混合定位系统 实时计算 全球定位系统 嵌入式系统 人机交互 无线 定位系统 电信 古生物学 几何学 点(几何) 数学 生物
作者
Manjarini Mallik,Ayan Kumar Panja,Chandreyee Chowdhury
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 126-151 被引量:25
标识
DOI:10.1016/j.inffus.2023.01.023
摘要

Seamless positioning and navigation requires an integration of outdoor and indoor positioning systems. Until recently, these systems mostly function in-silos. Though GNSS has become a standalone system for outdoors, no unified positioning modality could be found for indoor environments. Wi-Fi and Bluetooth signals are popular choices though. Increased adoption of different machine learning techniques for indoor–outdoor context detection and localization could be witnessed in the recent literature. The difficulty in precise data annotation, need for sensor fusion, the effect of different hardware configurations pose critical challenges that affect the success of indoor–outdoor (IO) positioning systems. Wireless sensor-based techniques are explicitly programmed, hence estimating locations dynamically becomes challenging. Machine learning and deep learning techniques can be used to overcome such situations and react appropriately by self-learning through experiences and actions without human intervention or reprogramming. Hence, the focus of the work is to present the readers a comprehensive survey of the applicability of machine learning and deep learning to achieve seamless navigation. The paper systematically discusses the application perspectives, research challenges, and the framework of ML (mostly) and DL (a few) based positioning approaches. The comparisons against various parameters like the technology used, the procedure applied, output metric and challenges are presented along with experimental results on benchmark datasets. The paper contributes to bridging the IO localization approaches with IO detection techniques so as to pave the way into the research domain for seamless positioning. Recent advances and hence, possible future research directions in the context of IO localization have also been articulated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
不知道叫个啥完成签到 ,获得积分10
22秒前
rebeycca发布了新的文献求助10
25秒前
Yuki完成签到 ,获得积分10
25秒前
负责惊蛰完成签到 ,获得积分10
25秒前
Akim应助科研通管家采纳,获得10
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
1分钟前
1分钟前
hugeyoung发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
汉堡包应助rebeycca采纳,获得10
1分钟前
曾业辉发布了新的文献求助10
1分钟前
SMG完成签到 ,获得积分10
1分钟前
所所应助曾业辉采纳,获得10
1分钟前
云墨完成签到 ,获得积分10
1分钟前
2分钟前
sujinyu发布了新的文献求助80
2分钟前
zz完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
申腾达发布了新的文献求助10
2分钟前
WWW发布了新的文献求助10
2分钟前
WWW完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
开拖拉机的芍药完成签到 ,获得积分10
3分钟前
ROMANTIC完成签到 ,获得积分10
3分钟前
3分钟前
Lucas应助开朗灵萱采纳,获得10
3分钟前
YUE66完成签到,获得积分10
3分钟前
3分钟前
开朗灵萱发布了新的文献求助10
3分钟前
情怀应助奋斗的马里奥采纳,获得10
3分钟前
传奇3应助开朗灵萱采纳,获得10
3分钟前
Richard完成签到,获得积分10
3分钟前
monica完成签到 ,获得积分10
3分钟前
Jessica完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439