Paving the way with machine learning for seamless indoor–outdoor positioning: A survey

计算机科学 人工智能 全球导航卫星系统应用 蓝牙 深度学习 背景(考古学) 传感器融合 机器学习 混合定位系统 实时计算 全球定位系统 嵌入式系统 人机交互 无线 定位系统 电信 生物 古生物学 数学 点(几何) 几何学
作者
Manjarini Mallik,Ayan Kumar Panja,Chandreyee Chowdhury
出处
期刊:Information Fusion [Elsevier BV]
卷期号:94: 126-151 被引量:25
标识
DOI:10.1016/j.inffus.2023.01.023
摘要

Seamless positioning and navigation requires an integration of outdoor and indoor positioning systems. Until recently, these systems mostly function in-silos. Though GNSS has become a standalone system for outdoors, no unified positioning modality could be found for indoor environments. Wi-Fi and Bluetooth signals are popular choices though. Increased adoption of different machine learning techniques for indoor–outdoor context detection and localization could be witnessed in the recent literature. The difficulty in precise data annotation, need for sensor fusion, the effect of different hardware configurations pose critical challenges that affect the success of indoor–outdoor (IO) positioning systems. Wireless sensor-based techniques are explicitly programmed, hence estimating locations dynamically becomes challenging. Machine learning and deep learning techniques can be used to overcome such situations and react appropriately by self-learning through experiences and actions without human intervention or reprogramming. Hence, the focus of the work is to present the readers a comprehensive survey of the applicability of machine learning and deep learning to achieve seamless navigation. The paper systematically discusses the application perspectives, research challenges, and the framework of ML (mostly) and DL (a few) based positioning approaches. The comparisons against various parameters like the technology used, the procedure applied, output metric and challenges are presented along with experimental results on benchmark datasets. The paper contributes to bridging the IO localization approaches with IO detection techniques so as to pave the way into the research domain for seamless positioning. Recent advances and hence, possible future research directions in the context of IO localization have also been articulated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
聪慧的怀绿完成签到,获得积分10
3秒前
3秒前
英姑应助逢流采纳,获得10
4秒前
活力思枫完成签到,获得积分10
4秒前
张甜完成签到,获得积分10
5秒前
towanda发布了新的文献求助10
5秒前
6秒前
CAOHOU应助Cici采纳,获得10
6秒前
Rondab应助Cici采纳,获得10
6秒前
大个应助Cici采纳,获得10
6秒前
谦让傲菡完成签到,获得积分10
7秒前
Leoling发布了新的文献求助10
8秒前
陈陈发布了新的文献求助10
10秒前
anyelengxin完成签到,获得积分20
10秒前
10秒前
天天快乐应助cijing采纳,获得10
11秒前
黎小静发布了新的文献求助10
11秒前
天天快乐应助猪猪hero采纳,获得10
11秒前
可飞完成签到,获得积分10
11秒前
徐逊发布了新的文献求助10
13秒前
17818521677完成签到,获得积分10
14秒前
15秒前
乐乐应助ssx采纳,获得20
15秒前
15秒前
量子星尘发布了新的文献求助150
16秒前
UNICORN完成签到,获得积分10
16秒前
zy完成签到,获得积分10
18秒前
菠萝蜜发布了新的文献求助10
20秒前
orixero应助UNICORN采纳,获得10
20秒前
坦率的匪应助冷静的斑马采纳,获得10
21秒前
黎小静完成签到,获得积分10
21秒前
Lucas应助lily采纳,获得10
22秒前
不秃头完成签到,获得积分10
22秒前
orixero应助lily采纳,获得10
22秒前
123关闭了123文献求助
22秒前
HH完成签到,获得积分10
22秒前
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126