Paving the way with machine learning for seamless indoor–outdoor positioning: A survey

计算机科学 人工智能 全球导航卫星系统应用 蓝牙 深度学习 背景(考古学) 传感器融合 机器学习 混合定位系统 实时计算 全球定位系统 嵌入式系统 人机交互 无线 定位系统 电信 古生物学 几何学 点(几何) 数学 生物
作者
Manjarini Mallik,Ayan Kumar Panja,Chandreyee Chowdhury
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 126-151 被引量:25
标识
DOI:10.1016/j.inffus.2023.01.023
摘要

Seamless positioning and navigation requires an integration of outdoor and indoor positioning systems. Until recently, these systems mostly function in-silos. Though GNSS has become a standalone system for outdoors, no unified positioning modality could be found for indoor environments. Wi-Fi and Bluetooth signals are popular choices though. Increased adoption of different machine learning techniques for indoor–outdoor context detection and localization could be witnessed in the recent literature. The difficulty in precise data annotation, need for sensor fusion, the effect of different hardware configurations pose critical challenges that affect the success of indoor–outdoor (IO) positioning systems. Wireless sensor-based techniques are explicitly programmed, hence estimating locations dynamically becomes challenging. Machine learning and deep learning techniques can be used to overcome such situations and react appropriately by self-learning through experiences and actions without human intervention or reprogramming. Hence, the focus of the work is to present the readers a comprehensive survey of the applicability of machine learning and deep learning to achieve seamless navigation. The paper systematically discusses the application perspectives, research challenges, and the framework of ML (mostly) and DL (a few) based positioning approaches. The comparisons against various parameters like the technology used, the procedure applied, output metric and challenges are presented along with experimental results on benchmark datasets. The paper contributes to bridging the IO localization approaches with IO detection techniques so as to pave the way into the research domain for seamless positioning. Recent advances and hence, possible future research directions in the context of IO localization have also been articulated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rush完成签到,获得积分10
刚刚
cong1216完成签到,获得积分20
刚刚
1秒前
snsut完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
九月完成签到,获得积分10
3秒前
7秒前
李爱国应助活泼的鸣凤采纳,获得10
7秒前
明亮思菱发布了新的文献求助10
7秒前
杰行天下完成签到,获得积分10
7秒前
小七2022发布了新的文献求助10
7秒前
8秒前
8秒前
8R60d8应助美好的跳跳糖采纳,获得30
9秒前
cc应助cheerfulsmurfs采纳,获得10
9秒前
温柔若颜发布了新的文献求助30
10秒前
星辰大海应助松本润不足采纳,获得10
11秒前
11秒前
嘻嘻发布了新的文献求助10
11秒前
Boundless发布了新的文献求助10
12秒前
13秒前
14秒前
小蘑菇应助英俊的晓槐采纳,获得10
14秒前
14秒前
15秒前
15秒前
FENGHUI发布了新的文献求助10
16秒前
haoxiaoyao发布了新的文献求助10
17秒前
17秒前
彭医生发布了新的文献求助30
18秒前
fazat发布了新的文献求助30
18秒前
18秒前
fff完成签到 ,获得积分10
18秒前
脑洞疼应助勤劳的鹤轩采纳,获得10
20秒前
20秒前
huihui2121发布了新的文献求助10
21秒前
JACS主编完成签到,获得积分10
21秒前
随心而动发布了新的文献求助10
21秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221245
求助须知:如何正确求助?哪些是违规求助? 2869888
关于积分的说明 8168155
捐赠科研通 2536685
什么是DOI,文献DOI怎么找? 1369025
科研通“疑难数据库(出版商)”最低求助积分说明 645328
邀请新用户注册赠送积分活动 619006