Paving the way with machine learning for seamless indoor–outdoor positioning: A survey

计算机科学 人工智能 全球导航卫星系统应用 蓝牙 深度学习 背景(考古学) 传感器融合 机器学习 混合定位系统 实时计算 全球定位系统 嵌入式系统 人机交互 无线 定位系统 电信 生物 古生物学 数学 点(几何) 几何学
作者
Manjarini Mallik,Ayan Kumar Panja,Chandreyee Chowdhury
出处
期刊:Information Fusion [Elsevier BV]
卷期号:94: 126-151 被引量:25
标识
DOI:10.1016/j.inffus.2023.01.023
摘要

Seamless positioning and navigation requires an integration of outdoor and indoor positioning systems. Until recently, these systems mostly function in-silos. Though GNSS has become a standalone system for outdoors, no unified positioning modality could be found for indoor environments. Wi-Fi and Bluetooth signals are popular choices though. Increased adoption of different machine learning techniques for indoor–outdoor context detection and localization could be witnessed in the recent literature. The difficulty in precise data annotation, need for sensor fusion, the effect of different hardware configurations pose critical challenges that affect the success of indoor–outdoor (IO) positioning systems. Wireless sensor-based techniques are explicitly programmed, hence estimating locations dynamically becomes challenging. Machine learning and deep learning techniques can be used to overcome such situations and react appropriately by self-learning through experiences and actions without human intervention or reprogramming. Hence, the focus of the work is to present the readers a comprehensive survey of the applicability of machine learning and deep learning to achieve seamless navigation. The paper systematically discusses the application perspectives, research challenges, and the framework of ML (mostly) and DL (a few) based positioning approaches. The comparisons against various parameters like the technology used, the procedure applied, output metric and challenges are presented along with experimental results on benchmark datasets. The paper contributes to bridging the IO localization approaches with IO detection techniques so as to pave the way into the research domain for seamless positioning. Recent advances and hence, possible future research directions in the context of IO localization have also been articulated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宸5931完成签到,获得积分10
刚刚
刚刚
刚刚
CDN完成签到,获得积分20
1秒前
英俊的铭应助快乐采纳,获得10
1秒前
虚幻双双发布了新的文献求助10
1秒前
Blank完成签到,获得积分10
1秒前
1秒前
希望天下0贩的0应助lx采纳,获得10
1秒前
大方依玉完成签到 ,获得积分10
2秒前
2秒前
小马甲应助charm12采纳,获得10
3秒前
西部牛仔发布了新的文献求助10
3秒前
3秒前
大个应助fanicky采纳,获得10
4秒前
4秒前
可不关注了科研通微信公众号
4秒前
七七发布了新的文献求助10
4秒前
orixero应助Xinwen0322采纳,获得10
4秒前
ZC完成签到,获得积分10
5秒前
书雪发布了新的文献求助10
5秒前
俞若枫完成签到,获得积分0
5秒前
今后应助wu采纳,获得10
5秒前
可靠之玉发布了新的文献求助10
6秒前
深情安青应助交理采纳,获得10
6秒前
所所应助敏敏采纳,获得10
6秒前
6秒前
吴威武发布了新的文献求助100
6秒前
JC完成签到,获得积分10
7秒前
Nora完成签到,获得积分10
7秒前
独特乘云完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助dog采纳,获得10
8秒前
思源应助wsz采纳,获得10
8秒前
9秒前
9秒前
微笑柜子发布了新的文献求助10
10秒前
10秒前
共享精神应助西部牛仔采纳,获得10
10秒前
wjh发布了新的文献求助10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646