Paving the way with machine learning for seamless indoor–outdoor positioning: A survey

计算机科学 人工智能 全球导航卫星系统应用 蓝牙 深度学习 背景(考古学) 传感器融合 机器学习 混合定位系统 实时计算 全球定位系统 嵌入式系统 人机交互 无线 定位系统 电信 古生物学 几何学 点(几何) 数学 生物
作者
Manjarini Mallik,Ayan Kumar Panja,Chandreyee Chowdhury
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 126-151 被引量:25
标识
DOI:10.1016/j.inffus.2023.01.023
摘要

Seamless positioning and navigation requires an integration of outdoor and indoor positioning systems. Until recently, these systems mostly function in-silos. Though GNSS has become a standalone system for outdoors, no unified positioning modality could be found for indoor environments. Wi-Fi and Bluetooth signals are popular choices though. Increased adoption of different machine learning techniques for indoor–outdoor context detection and localization could be witnessed in the recent literature. The difficulty in precise data annotation, need for sensor fusion, the effect of different hardware configurations pose critical challenges that affect the success of indoor–outdoor (IO) positioning systems. Wireless sensor-based techniques are explicitly programmed, hence estimating locations dynamically becomes challenging. Machine learning and deep learning techniques can be used to overcome such situations and react appropriately by self-learning through experiences and actions without human intervention or reprogramming. Hence, the focus of the work is to present the readers a comprehensive survey of the applicability of machine learning and deep learning to achieve seamless navigation. The paper systematically discusses the application perspectives, research challenges, and the framework of ML (mostly) and DL (a few) based positioning approaches. The comparisons against various parameters like the technology used, the procedure applied, output metric and challenges are presented along with experimental results on benchmark datasets. The paper contributes to bridging the IO localization approaches with IO detection techniques so as to pave the way into the research domain for seamless positioning. Recent advances and hence, possible future research directions in the context of IO localization have also been articulated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助三文鱼采纳,获得10
刚刚
刚刚
斯文败类应助又是许想想采纳,获得10
刚刚
火星上如音关注了科研通微信公众号
刚刚
巫马谷南发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
zhuhaiting发布了新的文献求助10
2秒前
可不发布了新的文献求助10
3秒前
3秒前
3秒前
抹茶泡泡完成签到 ,获得积分10
4秒前
4秒前
5秒前
Qiuqiu发布了新的文献求助20
5秒前
6秒前
2211111完成签到 ,获得积分10
6秒前
6秒前
CYJ完成签到,获得积分10
6秒前
6秒前
缥缈傥发布了新的文献求助10
7秒前
王菲发布了新的文献求助10
8秒前
yxb完成签到 ,获得积分20
8秒前
Lucas应助王金娥采纳,获得10
8秒前
SciGPT应助陈佳琦采纳,获得10
9秒前
9秒前
cong666完成签到,获得积分10
9秒前
yanghuiy1发布了新的文献求助10
9秒前
Csy发布了新的文献求助20
10秒前
ping完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
吃不胖的阿吴完成签到,获得积分10
11秒前
中国大陆发布了新的文献求助10
11秒前
简单项链发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
nnn完成签到,获得积分10
13秒前
小南极完成签到,获得积分10
13秒前
小米完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709417
求助须知:如何正确求助?哪些是违规求助? 5194819
关于积分的说明 15256984
捐赠科研通 4862196
什么是DOI,文献DOI怎么找? 2609928
邀请新用户注册赠送积分活动 1560336
关于科研通互助平台的介绍 1518058