Paving the way with machine learning for seamless indoor–outdoor positioning: A survey

计算机科学 人工智能 全球导航卫星系统应用 蓝牙 深度学习 背景(考古学) 传感器融合 机器学习 混合定位系统 实时计算 全球定位系统 嵌入式系统 人机交互 无线 定位系统 电信 古生物学 几何学 点(几何) 数学 生物
作者
Manjarini Mallik,Ayan Kumar Panja,Chandreyee Chowdhury
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 126-151 被引量:25
标识
DOI:10.1016/j.inffus.2023.01.023
摘要

Seamless positioning and navigation requires an integration of outdoor and indoor positioning systems. Until recently, these systems mostly function in-silos. Though GNSS has become a standalone system for outdoors, no unified positioning modality could be found for indoor environments. Wi-Fi and Bluetooth signals are popular choices though. Increased adoption of different machine learning techniques for indoor–outdoor context detection and localization could be witnessed in the recent literature. The difficulty in precise data annotation, need for sensor fusion, the effect of different hardware configurations pose critical challenges that affect the success of indoor–outdoor (IO) positioning systems. Wireless sensor-based techniques are explicitly programmed, hence estimating locations dynamically becomes challenging. Machine learning and deep learning techniques can be used to overcome such situations and react appropriately by self-learning through experiences and actions without human intervention or reprogramming. Hence, the focus of the work is to present the readers a comprehensive survey of the applicability of machine learning and deep learning to achieve seamless navigation. The paper systematically discusses the application perspectives, research challenges, and the framework of ML (mostly) and DL (a few) based positioning approaches. The comparisons against various parameters like the technology used, the procedure applied, output metric and challenges are presented along with experimental results on benchmark datasets. The paper contributes to bridging the IO localization approaches with IO detection techniques so as to pave the way into the research domain for seamless positioning. Recent advances and hence, possible future research directions in the context of IO localization have also been articulated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助shenmin采纳,获得10
2秒前
自建发布了新的文献求助10
3秒前
小蘑菇应助123采纳,获得10
3秒前
Antil发布了新的文献求助10
3秒前
4秒前
4秒前
sheeptime完成签到,获得积分20
4秒前
扬帆远航应助方俊驰采纳,获得10
4秒前
vigour发布了新的文献求助10
4秒前
淡然盈完成签到,获得积分10
5秒前
6秒前
15631155135发布了新的文献求助10
6秒前
朴实寻双发布了新的文献求助10
6秒前
7秒前
Lann完成签到,获得积分10
9秒前
兰亭序完成签到,获得积分10
9秒前
9秒前
Llllllllily完成签到,获得积分10
9秒前
辛勤寻凝应助武雨寒采纳,获得10
9秒前
9秒前
H0000发布了新的文献求助10
10秒前
11秒前
彬彬完成签到 ,获得积分10
11秒前
隐形曼青应助lilywang采纳,获得10
11秒前
11秒前
11秒前
一一发布了新的文献求助10
12秒前
科研通AI6.1应助DG采纳,获得10
12秒前
今后应助slience采纳,获得10
12秒前
13秒前
muzi871203完成签到,获得积分10
13秒前
13秒前
13秒前
黑夜无头骑士完成签到 ,获得积分10
14秒前
15秒前
15秒前
研友_Z3vN0n完成签到,获得积分10
15秒前
沉默的驳发布了新的文献求助10
16秒前
Owen应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736423
求助须知:如何正确求助?哪些是违规求助? 5365865
关于积分的说明 15333121
捐赠科研通 4880261
什么是DOI,文献DOI怎么找? 2622762
邀请新用户注册赠送积分活动 1571646
关于科研通互助平台的介绍 1528507