A Data-Driven Approach to Refine Predictions of Differentiated Thyroid Cancer Outcomes: A Prospective Multicenter Study

医学 甲状腺癌 四分位间距 体质指数 前瞻性队列研究 内科学 肿瘤科 风险评估 队列 甲状腺 疾病 计算机科学 计算机安全
作者
Giorgio Grani,Michele Gentili,Federico Siciliano,Domenico Albano,Valentina Zilioli,Silvia Morelli,Efisio Puxeddu,Maria Chiara Zatelli,Irene Gagliardi,Alessandro Piovesan,Alice Nervo,Umberto Crocetti,Michela Massa,Maria Teresa Samà,Chiara Mele,Maurilio Deandrea,Laura Fugazzola,Barbara Puligheddu,Alessandro Antonelli,Ruth Rossetto,Annamaria D’Amore,Graziano Ceresini,Roberto Castello,Erica Solaroli,Marco Centanni,Salvatore Monti,Flavia Magri,Rocco Bruno,Clotilde Sparano,Luciano Pezzullo,Anna Crescenzi,Caterina Mian,Dario Tumino,Andrea Repaci,Maria Grazia Castagna,Vincenzo Triggiani,Tommaso Porcelli,Domenico Meringolo,Laura D. Locati,Giovanna Spiazzi,Giulia Di Dalmazi,Aris Anagnostopoulos,Stefano Leonardi,Sébastiano Filetti,Cosimo Durante
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [The Endocrine Society]
卷期号:108 (8): 1921-1928 被引量:15
标识
DOI:10.1210/clinem/dgad075
摘要

Abstract Context The risk stratification of patients with differentiated thyroid cancer (DTC) is crucial in clinical decision making. The most widely accepted method to assess risk of recurrent/persistent disease is described in the 2015 American Thyroid Association (ATA) guidelines. However, recent research has focused on the inclusion of novel features or questioned the relevance of currently included features. Objective To develop a comprehensive data-driven model to predict persistent/recurrent disease that can capture all available features and determine the weight of predictors. Methods In a prospective cohort study, using the Italian Thyroid Cancer Observatory (ITCO) database (NCT04031339), we selected consecutive cases with DTC and at least early follow-up data (n = 4773; median follow-up 26 months; interquartile range, 12-46 months) at 40 Italian clinical centers. A decision tree was built to assign a risk index to each patient. The model allowed us to investigate the impact of different variables in risk prediction. Results By ATA risk estimation, 2492 patients (52.2%) were classified as low, 1873 (39.2%) as intermediate, and 408 as high risk. The decision tree model outperformed the ATA risk stratification system: the sensitivity of high-risk classification for structural disease increased from 37% to 49%, and the negative predictive value for low-risk patients increased by 3%. Feature importance was estimated. Several variables not included in the ATA system significantly impacted the prediction of disease persistence/recurrence: age, body mass index, tumor size, sex, family history of thyroid cancer, surgical approach, presurgical cytology, and circumstances of the diagnosis. Conclusion Current risk stratification systems may be complemented by the inclusion of other variables in order to improve the prediction of treatment response. A complete dataset allows for more precise patient clustering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的含芙完成签到,获得积分20
1秒前
生动的凡完成签到,获得积分10
1秒前
白天亮发布了新的文献求助10
1秒前
关关完成签到,获得积分10
2秒前
s11282023完成签到,获得积分10
3秒前
文艺凉面完成签到 ,获得积分20
3秒前
minmin完成签到,获得积分10
3秒前
4秒前
不配.应助2025采纳,获得10
4秒前
zhugepengju发布了新的文献求助10
5秒前
磕盐民工完成签到,获得积分10
5秒前
陌然浅笑完成签到,获得积分10
6秒前
宇文青寒发布了新的文献求助10
6秒前
coconut发布了新的文献求助10
7秒前
7秒前
Joo完成签到,获得积分10
8秒前
8秒前
orixero应助上进生采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
医路有你发布了新的文献求助10
12秒前
努力的小狗屁应助陈一采纳,获得30
13秒前
13秒前
13秒前
高高的丹雪完成签到 ,获得积分10
13秒前
jx314完成签到,获得积分10
14秒前
yumemakase发布了新的文献求助10
14秒前
抗体小王完成签到,获得积分10
14秒前
14秒前
15秒前
迪er发布了新的文献求助10
15秒前
丘比特应助玛卡巴卡采纳,获得10
15秒前
lapidary完成签到,获得积分20
16秒前
高高的丹雪关注了科研通微信公众号
16秒前
16秒前
16秒前
pengxixi50694完成签到,获得积分10
17秒前
和平星发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156221
求助须知:如何正确求助?哪些是违规求助? 2807720
关于积分的说明 7874164
捐赠科研通 2465918
什么是DOI,文献DOI怎么找? 1312504
科研通“疑难数据库(出版商)”最低求助积分说明 630154
版权声明 601912