Reference prior for Bayesian estimation of seismic fragility curves

脆弱性 贝叶斯概率 估计 贝叶斯估计量 计量经济学 地质学 计算机科学 地震学 统计 数学 经济 物理 管理 热力学
作者
Antoine Van Biesbroeck,Clément Gauchy,Cyril Feau,Josselin Garnier
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2302.06935
摘要

One of the key elements of probabilistic seismic risk assessment studies is the fragility curve, which represents the conditional probability of failure of a mechanical structure for a given scalar measure derived from seismic ground motion. For many structures of interest, estimating these curves is a daunting task because of the limited amount of data available; data which is only binary in our framework, i.e., only describing the structure as being in a failure or non-failure state. A large number of methods described in the literature tackle this challenging framework through parametric log-normal models. Bayesian approaches, on the other hand, allow model parameters to be learned more efficiently. However, the impact of the choice of the prior distribution on the posterior distribution cannot be readily neglected and, consequently, neither can its impact on any resulting estimation. This paper proposes a comprehensive study of this parametric Bayesian estimation problem for limited and binary data. Using the reference prior theory as a cornerstone, this study develops an objective approach to choosing the prior. This approach leads to the Jeffreys prior, which is derived for this problem for the first time. The posterior distribution is proven to be proper with the Jeffreys prior but improper with some traditional priors found in the literature. With the Jeffreys prior, the posterior distribution is also shown to vanish at the boundaries of the parameters' domain, which means that sampling the posterior distribution of the parameters does not result in anomalously small or large values. Therefore, the use of the Jeffreys prior does not result in degenerate fragility curves such as unit-step functions, and leads to more robust credibility intervals. The numerical results obtained from different case studies-including an industrial example-illustrate the theoretical predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助T拐拐采纳,获得10
刚刚
聚光灯下完成签到,获得积分10
刚刚
怕黑的静蕾应助yuqinghui98采纳,获得10
2秒前
科研通AI5应助beenest采纳,获得10
2秒前
CHEN完成签到 ,获得积分10
2秒前
酷波er应助个性的帽子采纳,获得10
6秒前
6秒前
6秒前
9秒前
芒果爸爸完成签到,获得积分10
9秒前
科研鸟发布了新的文献求助10
9秒前
10秒前
廉紫真完成签到,获得积分10
10秒前
yyauthor发布了新的文献求助20
10秒前
10秒前
22发布了新的文献求助10
12秒前
12秒前
紫棉发布了新的文献求助10
15秒前
wanci应助芒果爸爸采纳,获得10
15秒前
15秒前
T拐拐发布了新的文献求助10
16秒前
益善发布了新的文献求助10
16秒前
16秒前
请叫我风吹麦浪应助陳某采纳,获得10
16秒前
酷酷的冰真应助和谐幻柏采纳,获得20
16秒前
17秒前
Robby应助面壁的章北海采纳,获得10
17秒前
17秒前
ding应助hxnz2001采纳,获得10
17秒前
hh发布了新的文献求助10
17秒前
JamesPei应助待风归采纳,获得10
19秒前
海东来完成签到,获得积分10
19秒前
20秒前
liuxuiaologn发布了新的文献求助10
20秒前
田様应助Wuc采纳,获得10
20秒前
21秒前
闪闪羊完成签到,获得积分10
22秒前
22秒前
益善完成签到,获得积分10
23秒前
LL完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420