重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Reference prior for Bayesian estimation of seismic fragility curves

脆弱性 贝叶斯概率 估计 贝叶斯估计量 计量经济学 地质学 计算机科学 地震学 统计 数学 经济 物理 热力学 管理
作者
Antoine Van Biesbroeck,Clément Gauchy,Cyril Feau,Josselin Garnier
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2302.06935
摘要

One of the key elements of probabilistic seismic risk assessment studies is the fragility curve, which represents the conditional probability of failure of a mechanical structure for a given scalar measure derived from seismic ground motion. For many structures of interest, estimating these curves is a daunting task because of the limited amount of data available; data which is only binary in our framework, i.e., only describing the structure as being in a failure or non-failure state. A large number of methods described in the literature tackle this challenging framework through parametric log-normal models. Bayesian approaches, on the other hand, allow model parameters to be learned more efficiently. However, the impact of the choice of the prior distribution on the posterior distribution cannot be readily neglected and, consequently, neither can its impact on any resulting estimation. This paper proposes a comprehensive study of this parametric Bayesian estimation problem for limited and binary data. Using the reference prior theory as a cornerstone, this study develops an objective approach to choosing the prior. This approach leads to the Jeffreys prior, which is derived for this problem for the first time. The posterior distribution is proven to be proper with the Jeffreys prior but improper with some traditional priors found in the literature. With the Jeffreys prior, the posterior distribution is also shown to vanish at the boundaries of the parameters' domain, which means that sampling the posterior distribution of the parameters does not result in anomalously small or large values. Therefore, the use of the Jeffreys prior does not result in degenerate fragility curves such as unit-step functions, and leads to more robust credibility intervals. The numerical results obtained from different case studies-including an industrial example-illustrate the theoretical predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
只要两毛九完成签到,获得积分10
1秒前
wltwb完成签到,获得积分10
2秒前
2秒前
2秒前
xiaoyudian完成签到,获得积分10
2秒前
3秒前
wxyshare应助泡泡采纳,获得10
4秒前
脑洞疼应助哦哦采纳,获得10
4秒前
5秒前
5秒前
快乐砖家完成签到,获得积分10
5秒前
072完成签到,获得积分10
5秒前
wltwb发布了新的文献求助10
6秒前
6秒前
JohnLocke完成签到,获得积分10
6秒前
7秒前
7秒前
桃桃奶盖发布了新的文献求助10
7秒前
20240901发布了新的文献求助10
7秒前
共享精神应助康康采纳,获得10
8秒前
啦啦啦啦发布了新的文献求助20
8秒前
9秒前
happypig发布了新的文献求助10
9秒前
科研通AI6应助cheng采纳,获得30
9秒前
雪落你看不见完成签到,获得积分10
10秒前
朱大帅发布了新的文献求助10
10秒前
10秒前
嘿嘿嘿发布了新的文献求助10
11秒前
11秒前
快乐砖家发布了新的文献求助10
11秒前
安小安发布了新的文献求助20
11秒前
愿抒完成签到 ,获得积分10
12秒前
SciGPT应助潇洒雁风采纳,获得10
12秒前
tk完成签到,获得积分10
12秒前
共享精神应助A宇采纳,获得10
13秒前
搜集达人应助野原新知珉采纳,获得10
13秒前
13秒前
领导范儿应助导师求放过采纳,获得30
13秒前
姜且发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707