亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reference prior for Bayesian estimation of seismic fragility curves

脆弱性 贝叶斯概率 估计 贝叶斯估计量 计量经济学 地质学 计算机科学 地震学 统计 数学 经济 物理 管理 热力学
作者
Antoine Van Biesbroeck,Clément Gauchy,Cyril Feau,Josselin Garnier
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2302.06935
摘要

One of the key elements of probabilistic seismic risk assessment studies is the fragility curve, which represents the conditional probability of failure of a mechanical structure for a given scalar measure derived from seismic ground motion. For many structures of interest, estimating these curves is a daunting task because of the limited amount of data available; data which is only binary in our framework, i.e., only describing the structure as being in a failure or non-failure state. A large number of methods described in the literature tackle this challenging framework through parametric log-normal models. Bayesian approaches, on the other hand, allow model parameters to be learned more efficiently. However, the impact of the choice of the prior distribution on the posterior distribution cannot be readily neglected and, consequently, neither can its impact on any resulting estimation. This paper proposes a comprehensive study of this parametric Bayesian estimation problem for limited and binary data. Using the reference prior theory as a cornerstone, this study develops an objective approach to choosing the prior. This approach leads to the Jeffreys prior, which is derived for this problem for the first time. The posterior distribution is proven to be proper with the Jeffreys prior but improper with some traditional priors found in the literature. With the Jeffreys prior, the posterior distribution is also shown to vanish at the boundaries of the parameters' domain, which means that sampling the posterior distribution of the parameters does not result in anomalously small or large values. Therefore, the use of the Jeffreys prior does not result in degenerate fragility curves such as unit-step functions, and leads to more robust credibility intervals. The numerical results obtained from different case studies-including an industrial example-illustrate the theoretical predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助复杂的鑫磊采纳,获得10
3秒前
酷波er应助聪聪great采纳,获得10
4秒前
CipherSage应助gabauser采纳,获得10
29秒前
JrPaleo101应助dahai采纳,获得10
53秒前
pp完成签到 ,获得积分0
58秒前
59秒前
1437594843完成签到 ,获得积分10
1分钟前
gabauser发布了新的文献求助10
1分钟前
打打应助虞鱼瑜采纳,获得10
1分钟前
1分钟前
聪聪great发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助聪聪great采纳,获得10
2分钟前
三水发布了新的文献求助10
2分钟前
haihai蒂发布了新的文献求助10
2分钟前
2分钟前
juejue333完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分10
2分钟前
明亮的冰香完成签到 ,获得积分10
2分钟前
JrPaleo101应助Sience采纳,获得10
3分钟前
3分钟前
3分钟前
张可完成签到 ,获得积分10
3分钟前
天天快乐应助科研通管家采纳,获得30
4分钟前
seayoa发布了新的文献求助10
5分钟前
mashibeo完成签到,获得积分10
6分钟前
seayoa完成签到,获得积分10
6分钟前
6分钟前
施含莲发布了新的文献求助10
6分钟前
华仔应助施含莲采纳,获得10
6分钟前
zhang发布了新的文献求助10
7分钟前
李健应助玛琳卡迪马采纳,获得10
7分钟前
7分钟前
脑洞疼应助zhang采纳,获得10
7分钟前
zhang完成签到,获得积分10
7分钟前
8分钟前
今后应助宝宝烤面包采纳,获得50
8分钟前
9分钟前
9分钟前
施含莲发布了新的文献求助10
9分钟前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3275098
求助须知:如何正确求助?哪些是违规求助? 2914160
关于积分的说明 8371577
捐赠科研通 2584930
什么是DOI,文献DOI怎么找? 1407309
科研通“疑难数据库(出版商)”最低求助积分说明 656863
邀请新用户注册赠送积分活动 637356