亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning GAN-Based Foveated Reconstruction to Recover Perceptually Important Image Features

人工智能 计算机科学 计算机视觉 光学(聚焦) 幻觉 公制(单位) 人类视觉系统模型 图像(数学) 图像质量 运营管理 光学 物理 经济
作者
Luca Surace,Marek Wernikowski,Cara Tursun,Karol Myszkowski,Radosław Mantiuk,Piotr Didyk
出处
期刊:ACM Transactions on Applied Perception [Association for Computing Machinery]
卷期号:20 (2): 1-23
标识
DOI:10.1145/3583072
摘要

A foveated image can be entirely reconstructed from a sparse set of samples distributed according to the retinal sensitivity of the human visual system, which rapidly decreases with increasing eccentricity. The use of generative adversarial networks (GANs) has recently been shown to be a promising solution for such a task, as they can successfully hallucinate missing image information. As in the case of other supervised learning approaches, the definition of the loss function and the training strategy heavily influence the quality of the output. In this work,we consider the problem of efficiently guiding the training of foveated reconstruction techniques such that they are more aware of the capabilities and limitations of the human visual system, and thus can reconstruct visually important image features. Our primary goal is to make the training procedure less sensitive to distortions that humans cannot detect and focus on penalizing perceptually important artifacts. Given the nature of GAN-based solutions, we focus on the sensitivity of human vision to hallucination in case of input samples with different densities. We propose psychophysical experiments, a dataset, and a procedure for training foveated image reconstruction. The proposed strategy renders the generator network flexible by penalizing only perceptually important deviations in the output. As a result, the method emphasized the recovery of perceptually important image features. We evaluated our strategy and compared it with alternative solutions by using a newly trained objective metric, a recent foveated video quality metric, and user experiments. Our evaluations revealed significant improvements in the perceived image reconstruction quality compared with the standard GAN-based training approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碘伏完成签到 ,获得积分10
38秒前
43秒前
LSL丶完成签到,获得积分10
47秒前
奋斗嫣然发布了新的文献求助10
49秒前
Otter完成签到,获得积分10
1分钟前
1分钟前
李春宇完成签到 ,获得积分10
1分钟前
优雅草丛发布了新的文献求助10
1分钟前
Seven完成签到,获得积分10
1分钟前
NexusExplorer应助Bo采纳,获得10
1分钟前
优雅草丛完成签到,获得积分10
1分钟前
2分钟前
慕青应助eureka采纳,获得10
2分钟前
xliiii发布了新的文献求助10
2分钟前
2分钟前
xliiii完成签到,获得积分10
2分钟前
2分钟前
Bo发布了新的文献求助10
2分钟前
eureka完成签到,获得积分10
2分钟前
eureka发布了新的文献求助10
2分钟前
Bo完成签到,获得积分20
2分钟前
2分钟前
youyou糍粑发布了新的文献求助10
2分钟前
金薇薇关注了科研通微信公众号
2分钟前
星辰大海应助youyou糍粑采纳,获得10
2分钟前
3分钟前
尉迟姿发布了新的文献求助10
3分钟前
尉迟姿完成签到,获得积分20
4分钟前
这个手刹不太灵完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
ding应助万俟采纳,获得10
4分钟前
Lyw完成签到 ,获得积分10
5分钟前
5分钟前
大方易巧完成签到 ,获得积分10
5分钟前
5分钟前
lani完成签到 ,获得积分10
5分钟前
5分钟前
华师发布了新的文献求助30
5分钟前
脑洞疼应助华师采纳,获得10
6分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484427
求助须知:如何正确求助?哪些是违规求助? 3073435
关于积分的说明 9130961
捐赠科研通 2765049
什么是DOI,文献DOI怎么找? 1517559
邀请新用户注册赠送积分活动 702166
科研通“疑难数据库(出版商)”最低求助积分说明 701166