PSCSO: Enhanced sand cat swarm optimization inspired by the political system to solve complex problems

数学优化 水准点(测量) 职位(财务) 元启发式 趋同(经济学) 粒子群优化 帝国主义竞争算法 群体行为 算法 计算机科学 最优化问题 多群优化 数学 大地测量学 财务 经济增长 经济 地理
作者
Farzad Kiani,Fateme Aysin Anka,Fahri ERENEL
出处
期刊:Advances in Engineering Software [Elsevier]
卷期号:178: 103423-103423 被引量:27
标识
DOI:10.1016/j.advengsoft.2023.103423
摘要

The Sand Cat Swarm Optimization (SCSO) algorithm is a recently introduced metaheuristic with balanced behavior in the exploration and exploitation phases. However, it is not fast in convergence and may not be successful in finding the global optima, especially for complex problems since it starts the exploitation phase late. Moreover, the performance of SCSO is also affected by incorrect position as it depends on the location of the global optimum. Therefore, this study proposes a new method for the SCSO algorithm with a multidisciplinary principle inspired by the Political (Parliamentary) system, which is named PSCSO. The suggested algorithm increases the chances of finding the global solution by randomly choosing positions between the position of the candidate's best solution available so far and the current position during the exploitation phase. In this regard, a new coefficient is defined that affects the exploration and exploitation phases. In addition, a new mathematical model is introduced to use in the exploitation phase. The performance of the PSCSO algorithm is analyzed on a total of 41 benchmark functions from CEC2015, 2017, and 2019. In addition, its performance is evaluated in four classical engineering problems. The proposed algorithm is compared with the SCSO, Stochastic variation and Elite collaboration in SCSO (SE-SCSO), Hybrid SCSO (HSCSO), Parliamentary Optimization Algorithm (POA), and Arithmetic Optimization Algorithm (AOA) algorithms, which have been proposed in recent years. The obtained results depict that the PSCSO algorithm performs better or equivalently to the compared optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
爆米花应助吐丝麵包采纳,获得10
1秒前
酷波er应助辛勤代梅采纳,获得10
1秒前
感谢发量巨人转发科研通微信,获得积分50
1秒前
香蕉觅云应助强健的梦蕊采纳,获得10
2秒前
2秒前
3秒前
Kiriya完成签到,获得积分10
3秒前
shuang0116发布了新的文献求助10
3秒前
乐乐应助沐澈Saturn采纳,获得10
3秒前
HBin完成签到,获得积分10
4秒前
未来可期完成签到,获得积分10
4秒前
lijing完成签到,获得积分10
5秒前
聪明的剑愁完成签到,获得积分20
5秒前
小洪包发布了新的文献求助10
5秒前
6秒前
6秒前
顾矜应助许若南采纳,获得10
6秒前
Lucas应助富贵采纳,获得10
6秒前
舒服的美女完成签到,获得积分10
6秒前
可爱的函函应助Sherlock采纳,获得10
7秒前
狂野砖头完成签到,获得积分10
7秒前
Hammad发布了新的文献求助10
8秒前
郝宝真发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助张先伟采纳,获得30
8秒前
星辰大海应助KinFunny采纳,获得10
8秒前
forever完成签到,获得积分10
9秒前
完美世界应助科研通管家采纳,获得10
10秒前
专注的翠霜完成签到 ,获得积分10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
佳啊发布了新的文献求助10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169616
求助须知:如何正确求助?哪些是违规求助? 2820792
关于积分的说明 7932194
捐赠科研通 2481126
什么是DOI,文献DOI怎么找? 1321678
科研通“疑难数据库(出版商)”最低求助积分说明 633317
版权声明 602541