细胞内
化学
肠炎沙门氏菌
氯
沙门氏菌
食品科学
紫外线
微生物学
细菌细胞结构
细菌
生物化学
生物
有机化学
物理
量子力学
遗传学
作者
Xingyun Yuan,Yanjiao Li,Qingnan Mo,Beibei Zhang,Dengqun Shu,Lina Sun,Xianghui Zhao,Ran Zhang,Jiahui Zheng,Yingqi Jia,Yitian Zang
出处
期刊:Food Control
[Elsevier]
日期:2023-02-09
卷期号:148: 109681-109681
被引量:11
标识
DOI:10.1016/j.foodcont.2023.109681
摘要
This study aimed to investigate the inactivation effect and mechanism of combined treatment with slightly acidic electrolyzed water (SAEW) and ultraviolet light (UV, 253.7 nm, 10 W) (SAEW + UV) on Salmonella enteritidis. The result showed that S. enteritidis was 100% inactivated (9.21 log CFU/mL) by SAEW + UV at an available chlorine concentration (ACC) of 50 mg/L for 60 s. At the same time, the reduction value of SAEW and UV alone treatment was 6.61 and 2.27 log CFU/mL, respectively. The constructed model (R2 = 0.993) demonstrated that SAEW + UV is a highly effective germicidal method under organic matter interference (P < 0.05). The bactericidal effect was positively correlated with time and ACC, and there was also a significant interaction between time and ACC (P < 0.05). In addition, the cell membrane conductivity of S. enteritidis increased, intracellular proteins and nucleic acids exuded, intracellular ROS accumulated, and ATP decreased after SAEW + UV treatment for 60 s at ACC of 10 mg/L (P < 0.05). The results showed that SAEW + UV might disrupt the bacterial cell membrane and lead to the accumulation of intracellular ROS and a decrease of intracellular ATP, which resulted in bacterial death. Further studies are needed to understand the specific ROS production pathways of SAEW + UV on S. enteritidis.
科研通智能强力驱动
Strongly Powered by AbleSci AI