食品科学
砷
葱
化学
消化(炼金术)
葱瘘
生物
葱
毒理
园艺
有机化学
色谱法
作者
Yaqi Fu,Huili Du,Pengfei Wang,Naiyi Yin,Xiaolin Cai,Ziqi Geng,Yunpeng Li,Yanshan Cui
标识
DOI:10.1016/j.scitotenv.2023.165775
摘要
Seaweed is an important food source, especially in many Asian countries, because of its high nutritional value; however, increasing arsenic (As) accumulation may pose serious hazards to human health. The influence of food components on As bioaccessibility and transformation in the high As-containing seaweed Hizikia fusiforme was determined using an in vitro gastrointestinal digestion method. The results showed that co-digestion with several daily foods (such as celery, broccoli, onion, green chili, tomato) produced a higher As bioaccessibility (approximately 6-11 % increase) compared with that of seaweed alone. Vegetables such as fennel (Foeniculum valgare Mill.), celery (Apium grareolens L.), blanched garlic leaves (Allium sativum L.), scallions (Allium fistulosum L.), ginger (Zingiber officinale Rosc.), and green pepper (Capsicum frutescens L. vat. grussum Bailey) decreased bioaccessible inorganic As (18-35 %) in both the gastric and small intestinal phases. Meanwhile, the process of reducing As(V) to As(III) also occurred during co-digestion with some food matrices. Egg white and other animal proteins were the most effective reducing agents, transforming >70 % As(V) into As(III) in the solution system. These results may have important implications for health risk assessment via co-consumption. The present study provides the first evidence showing that the co-consumption of some vegetables and proteins leads to a higher toxicity of inorganic arsenic-containing food. In addition, the positive and negative effects of co-digestion on the bioaccessibility of essential metals (iron, manganese) compared to single digestion were evaluated in this study.
科研通智能强力驱动
Strongly Powered by AbleSci AI