When Spatio-Temporal Meet Wavelets: Disentangled Traffic Forecasting via Efficient Spectral Graph Attention Networks

计算机科学 图形 卷积(计算机科学) 数据挖掘 人工智能 理论计算机科学 人工神经网络
作者
Yuchen Fang,Yanjun Qin,Haiyong Luo,Fang Zhao,Bingbing Xu,Liang Zeng,Chenxing Wang
标识
DOI:10.1109/icde55515.2023.00046
摘要

Traffic forecasting is crucial for public safety and resource optimization, yet is very challenging due to the temporal changes and the dynamic spatial correlations of the traffic data. To capture these intricate dependencies, spatio-temporal networks, such as recurrent neural networks with graph convolution networks, graph convolution networks with temporal convolution networks, and temporal attention networks with full graph attention networks, are applied. However, previous spatio-temporal networks are based on end-to-end training and thus fail to handle the distribution shift in the non-stationary traffic time series. On the other hand, the efficient and effective algorithm for modeling spatial correlations is still lacking in prior networks.In this paper, rather than proposing yet another end-to-end model, we aim to provide a novel disentangle-fusion framework STWave to mitigate the distribution shift issue. The framework first decouples the complex traffic data into stable trends and fluctuating events, followed by a dual-channel spatio-temporal network to model trends and events, respectively. Finally, reasonable future traffic can be predicted through the fusion of trends and events. Besides, we incorporate a novel query sampling strategy and graph wavelet-based graph positional encoding into the full graph attention network to efficiently and effectively model dynamic spatial correlations. Extensive experiments on six traffic datasets show the superiority of our approach, i.e., the higher forecasting accuracy with lower computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangYJ完成签到,获得积分10
1秒前
莹莹完成签到 ,获得积分10
1秒前
充电宝应助yuyuwei采纳,获得10
1秒前
lili发布了新的文献求助10
3秒前
牛马学生完成签到,获得积分10
3秒前
爆米花应助JM采纳,获得30
3秒前
年年完成签到,获得积分20
3秒前
哭泣绿旋完成签到,获得积分10
4秒前
Ava应助m李采纳,获得10
4秒前
4秒前
Lau完成签到,获得积分20
8秒前
tq完成签到,获得积分10
8秒前
一只羊完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
嘟嘟完成签到 ,获得积分10
9秒前
10秒前
Akim应助李昕123采纳,获得20
10秒前
地理汪汪发布了新的文献求助10
10秒前
11秒前
在水一方应助lili采纳,获得10
11秒前
诺坎普的晚风完成签到,获得积分20
11秒前
13秒前
浮游应助料峭声花采纳,获得10
13秒前
JamesPei应助明白放弃采纳,获得10
14秒前
14秒前
WWW完成签到 ,获得积分10
15秒前
酸酸给酸酸的求助进行了留言
16秒前
18秒前
18秒前
lijiauyi1994发布了新的文献求助10
19秒前
19秒前
lili完成签到,获得积分10
21秒前
Lucas应助vayne采纳,获得10
21秒前
有魅力的沧海完成签到 ,获得积分10
22秒前
科研通AI6应助地理汪汪采纳,获得10
22秒前
lll发布了新的文献求助20
23秒前
所所应助白三采纳,获得10
23秒前
xiaoyao完成签到,获得积分10
24秒前
JiuYu发布了新的文献求助10
24秒前
yang完成签到,获得积分20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439