已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

When Spatio-Temporal Meet Wavelets: Disentangled Traffic Forecasting via Efficient Spectral Graph Attention Networks

计算机科学 图形 卷积(计算机科学) 数据挖掘 人工智能 理论计算机科学 人工神经网络
作者
Yuchen Fang,Yanjun Qin,Haiyong Luo,Fang Zhao,Bingbing Xu,Liang Zeng,Chenxing Wang
标识
DOI:10.1109/icde55515.2023.00046
摘要

Traffic forecasting is crucial for public safety and resource optimization, yet is very challenging due to the temporal changes and the dynamic spatial correlations of the traffic data. To capture these intricate dependencies, spatio-temporal networks, such as recurrent neural networks with graph convolution networks, graph convolution networks with temporal convolution networks, and temporal attention networks with full graph attention networks, are applied. However, previous spatio-temporal networks are based on end-to-end training and thus fail to handle the distribution shift in the non-stationary traffic time series. On the other hand, the efficient and effective algorithm for modeling spatial correlations is still lacking in prior networks.In this paper, rather than proposing yet another end-to-end model, we aim to provide a novel disentangle-fusion framework STWave to mitigate the distribution shift issue. The framework first decouples the complex traffic data into stable trends and fluctuating events, followed by a dual-channel spatio-temporal network to model trends and events, respectively. Finally, reasonable future traffic can be predicted through the fusion of trends and events. Besides, we incorporate a novel query sampling strategy and graph wavelet-based graph positional encoding into the full graph attention network to efficiently and effectively model dynamic spatial correlations. Extensive experiments on six traffic datasets show the superiority of our approach, i.e., the higher forecasting accuracy with lower computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zmj完成签到 ,获得积分10
4秒前
4秒前
无辜的如波完成签到,获得积分20
5秒前
5秒前
陈醒醒完成签到,获得积分10
6秒前
yyy完成签到 ,获得积分10
7秒前
7秒前
9秒前
11秒前
mapa完成签到,获得积分10
14秒前
16秒前
Abiu发布了新的文献求助10
17秒前
ED应助无辜的如波采纳,获得10
17秒前
18秒前
nana完成签到 ,获得积分10
18秒前
柒_l发布了新的文献求助10
20秒前
cc完成签到 ,获得积分10
20秒前
活力科研人完成签到,获得积分10
21秒前
sugar完成签到,获得积分10
22秒前
23秒前
刀锋完成签到,获得积分10
24秒前
31秒前
斯文败类应助霸气的金鱼采纳,获得10
31秒前
lyon完成签到 ,获得积分10
31秒前
JacekYu完成签到 ,获得积分10
32秒前
1124362229完成签到,获得积分20
33秒前
36秒前
m1nt完成签到,获得积分0
36秒前
40秒前
小树完成签到 ,获得积分10
43秒前
vantrung完成签到,获得积分10
44秒前
zhang完成签到 ,获得积分10
45秒前
念姬发布了新的文献求助10
46秒前
47秒前
GGBoy完成签到 ,获得积分10
50秒前
豌豆发布了新的文献求助10
51秒前
金蛋蛋完成签到 ,获得积分10
51秒前
脑洞疼应助小树采纳,获得10
52秒前
友好冥王星完成签到 ,获得积分10
52秒前
Stroeve完成签到,获得积分10
54秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963128
求助须知:如何正确求助?哪些是违规求助? 3509015
关于积分的说明 11144752
捐赠科研通 3242023
什么是DOI,文献DOI怎么找? 1791708
邀请新用户注册赠送积分活动 873115
科研通“疑难数据库(出版商)”最低求助积分说明 803621