Reinforcement Learning for Intelligent Healthcare Systems: A Review of Challenges, Applications, and Open Research Issues

强化学习 计算机科学 多样性(控制论) 背景(考古学) 医疗保健 开放式研究 智能决策支持系统 医疗保健系统 数据科学 风险分析(工程) 人工智能 管理科学 工程类 医学 万维网 经济 古生物学 生物 经济增长
作者
Alaa Awad Abdellatif,Naram Mhaisen,Amr Mohamed,Aiman Erbad,Mohsen Guizani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 21982-22007 被引量:16
标识
DOI:10.1109/jiot.2023.3288050
摘要

The rise of chronic disease patients and the pandemic pose immediate threats to healthcare expenditure and mortality rates. This calls for transforming healthcare systems away from one-on-one patient treatment into intelligent health systems, leveraging the recent advances of Internet of Things and smart sensors. Meanwhile, reinforcement learning (RL) has witnessed an intrinsic breakthrough in solving a variety of complex problems for distinct applications and services. Thus, this article presents a comprehensive survey of the recent models and techniques of RL that have been developed/used for supporting Intelligent-healthcare (I-health) systems. It can guide the readers to deeply understand the state-of-the-art regarding the use of RL in the context of I-health. Specifically, we first present an overview of the I-health systems' challenges, architecture, and how RL can benefit these systems. We then review the background and mathematical modeling of different RL, deep RL (DRL), and multiagent RL models. We highlight important guidelines on how to select the appropriate RL model for a given problem, and provide quantitative comparisons, showing the results of deploying key RL models in two scenarios that can be followed in monitoring applications. After that, we conduct an in-depth literature review on RL's applications in I-health systems, covering edge intelligence, smart core network, and dynamic treatment regimes. Finally, we highlight emerging challenges and future research directions to enhance RL's success in I-health systems, which opens the door for exploring some interesting and unsolved problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Wednesday Chong采纳,获得10
刚刚
刚刚
充电宝应助xia采纳,获得10
1秒前
1秒前
yyf关注了科研通微信公众号
1秒前
浮游应助果子采纳,获得10
2秒前
领导范儿应助yuyu采纳,获得10
2秒前
3秒前
不忘初心发布了新的文献求助10
3秒前
万能图书馆应助Nina采纳,获得10
3秒前
感动保温杯完成签到,获得积分10
4秒前
aliu发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
8秒前
。。完成签到,获得积分10
8秒前
九九发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
研友_VZG7GZ应助晴天采纳,获得10
9秒前
赶路人发布了新的文献求助10
10秒前
ying完成签到,获得积分10
10秒前
健忘的夜阑完成签到,获得积分10
10秒前
Nina完成签到,获得积分10
10秒前
Jasper应助高斯采纳,获得20
11秒前
11秒前
LG发布了新的文献求助30
13秒前
沈家兴完成签到 ,获得积分10
14秒前
璐璐发布了新的文献求助10
14秒前
希望天下0贩的0应助贰壹采纳,获得10
14秒前
无忧发布了新的文献求助10
16秒前
小二郎应助土豪的糜采纳,获得10
16秒前
矮小的映秋完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
18秒前
凉雨渲完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627161
求助须知:如何正确求助?哪些是违规求助? 4713090
关于积分的说明 14961386
捐赠科研通 4783800
什么是DOI,文献DOI怎么找? 2554728
邀请新用户注册赠送积分活动 1516296
关于科研通互助平台的介绍 1476641