Reinforcement Learning for Intelligent Healthcare Systems: A Review of Challenges, Applications, and Open Research Issues

强化学习 计算机科学 多样性(控制论) 背景(考古学) 医疗保健 开放式研究 智能决策支持系统 医疗保健系统 数据科学 风险分析(工程) 人工智能 管理科学 工程类 医学 万维网 经济 古生物学 生物 经济增长
作者
Alaa Awad Abdellatif,Naram Mhaisen,Amr Mohamed,Aiman Erbad,Mohsen Guizani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 21982-22007 被引量:16
标识
DOI:10.1109/jiot.2023.3288050
摘要

The rise of chronic disease patients and the pandemic pose immediate threats to healthcare expenditure and mortality rates. This calls for transforming healthcare systems away from one-on-one patient treatment into intelligent health systems, leveraging the recent advances of Internet of Things and smart sensors. Meanwhile, reinforcement learning (RL) has witnessed an intrinsic breakthrough in solving a variety of complex problems for distinct applications and services. Thus, this article presents a comprehensive survey of the recent models and techniques of RL that have been developed/used for supporting Intelligent-healthcare (I-health) systems. It can guide the readers to deeply understand the state-of-the-art regarding the use of RL in the context of I-health. Specifically, we first present an overview of the I-health systems' challenges, architecture, and how RL can benefit these systems. We then review the background and mathematical modeling of different RL, deep RL (DRL), and multiagent RL models. We highlight important guidelines on how to select the appropriate RL model for a given problem, and provide quantitative comparisons, showing the results of deploying key RL models in two scenarios that can be followed in monitoring applications. After that, we conduct an in-depth literature review on RL's applications in I-health systems, covering edge intelligence, smart core network, and dynamic treatment regimes. Finally, we highlight emerging challenges and future research directions to enhance RL's success in I-health systems, which opens the door for exploring some interesting and unsolved problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助SJ7采纳,获得10
刚刚
酷酷的如波完成签到 ,获得积分10
2秒前
椰子发布了新的文献求助10
3秒前
我是老大应助只是听说采纳,获得10
4秒前
天亮polar完成签到,获得积分10
5秒前
7秒前
默默水蓝发布了新的文献求助10
7秒前
8秒前
虾虾发布了新的文献求助10
9秒前
10秒前
Lliu完成签到,获得积分10
10秒前
11秒前
TT001发布了新的文献求助30
14秒前
曼曼完成签到,获得积分10
16秒前
落寞代亦发布了新的文献求助10
16秒前
岳阳张震岳完成签到,获得积分10
16秒前
Linda发布了新的文献求助10
16秒前
17秒前
17秒前
19秒前
科研通AI2S应助曼曼采纳,获得30
19秒前
20秒前
阿良完成签到 ,获得积分10
20秒前
渊渟岳峙完成签到,获得积分10
21秒前
阿茗完成签到,获得积分10
22秒前
清秀的大山完成签到,获得积分10
23秒前
111111发布了新的文献求助10
24秒前
WANDour完成签到,获得积分10
26秒前
三石发布了新的文献求助10
26秒前
渊渟岳峙发布了新的文献求助10
28秒前
28秒前
28秒前
李爱国应助初末采纳,获得10
30秒前
Zhang完成签到,获得积分10
32秒前
孟一完成签到,获得积分10
34秒前
luoman5656完成签到,获得积分10
34秒前
机灵又蓝完成签到 ,获得积分10
35秒前
39秒前
42秒前
小林野完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299184
求助须知:如何正确求助?哪些是违规求助? 4447424
关于积分的说明 13842647
捐赠科研通 4333048
什么是DOI,文献DOI怎么找? 2378492
邀请新用户注册赠送积分活动 1373800
关于科研通互助平台的介绍 1339331