已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement Learning for Intelligent Healthcare Systems: A Review of Challenges, Applications, and Open Research Issues

强化学习 计算机科学 多样性(控制论) 背景(考古学) 医疗保健 开放式研究 智能决策支持系统 医疗保健系统 数据科学 风险分析(工程) 人工智能 管理科学 工程类 医学 万维网 经济 古生物学 生物 经济增长
作者
Alaa Awad Abdellatif,Naram Mhaisen,Amr Mohamed,Aiman Erbad,Mohsen Guizani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 21982-22007 被引量:16
标识
DOI:10.1109/jiot.2023.3288050
摘要

The rise of chronic disease patients and the pandemic pose immediate threats to healthcare expenditure and mortality rates. This calls for transforming healthcare systems away from one-on-one patient treatment into intelligent health systems, leveraging the recent advances of Internet of Things and smart sensors. Meanwhile, reinforcement learning (RL) has witnessed an intrinsic breakthrough in solving a variety of complex problems for distinct applications and services. Thus, this article presents a comprehensive survey of the recent models and techniques of RL that have been developed/used for supporting Intelligent-healthcare (I-health) systems. It can guide the readers to deeply understand the state-of-the-art regarding the use of RL in the context of I-health. Specifically, we first present an overview of the I-health systems' challenges, architecture, and how RL can benefit these systems. We then review the background and mathematical modeling of different RL, deep RL (DRL), and multiagent RL models. We highlight important guidelines on how to select the appropriate RL model for a given problem, and provide quantitative comparisons, showing the results of deploying key RL models in two scenarios that can be followed in monitoring applications. After that, we conduct an in-depth literature review on RL's applications in I-health systems, covering edge intelligence, smart core network, and dynamic treatment regimes. Finally, we highlight emerging challenges and future research directions to enhance RL's success in I-health systems, which opens the door for exploring some interesting and unsolved problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
專注完美近乎苛求完成签到 ,获得积分10
刚刚
清脆安南完成签到 ,获得积分10
1秒前
粥粥sqk完成签到,获得积分10
1秒前
Youzi完成签到,获得积分10
2秒前
2秒前
英姑应助英吹斯挺采纳,获得10
4秒前
4秒前
5秒前
浮浮世世应助科研通管家采纳,获得50
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
kentonchow应助科研通管家采纳,获得30
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
6秒前
zzO完成签到,获得积分10
6秒前
Ashmitte完成签到 ,获得积分10
6秒前
假装有昵称完成签到 ,获得积分10
7秒前
LALA发布了新的文献求助10
7秒前
ffff发布了新的文献求助10
8秒前
林林完成签到,获得积分10
8秒前
cc发布了新的文献求助10
9秒前
嘟嘟雯完成签到 ,获得积分10
9秒前
woshizy完成签到,获得积分10
10秒前
aslink完成签到,获得积分10
11秒前
无私的冰双完成签到,获得积分10
11秒前
cindy完成签到,获得积分10
11秒前
传奇3应助刘壮实采纳,获得10
11秒前
vicky完成签到,获得积分10
13秒前
CC_Galaxy完成签到 ,获得积分10
13秒前
14秒前
Jason完成签到,获得积分20
15秒前
15秒前
bkagyin应助zz采纳,获得10
15秒前
16秒前
lina完成签到 ,获得积分10
17秒前
zzzzzz完成签到,获得积分10
18秒前
天天快乐应助潇潇鱼采纳,获得10
20秒前
20秒前
小药丸发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401142
求助须知:如何正确求助?哪些是违规求助? 4520145
关于积分的说明 14078789
捐赠科研通 4433229
什么是DOI,文献DOI怎么找? 2434030
邀请新用户注册赠送积分活动 1426180
关于科研通互助平台的介绍 1404792