Reinforcement Learning for Intelligent Healthcare Systems: A Review of Challenges, Applications, and Open Research Issues

强化学习 计算机科学 多样性(控制论) 背景(考古学) 医疗保健 开放式研究 智能决策支持系统 医疗保健系统 数据科学 风险分析(工程) 人工智能 管理科学 工程类 医学 万维网 经济 古生物学 生物 经济增长
作者
Alaa Awad Abdellatif,Naram Mhaisen,Amr Mohamed,Aiman Erbad,Mohsen Guizani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 21982-22007 被引量:16
标识
DOI:10.1109/jiot.2023.3288050
摘要

The rise of chronic disease patients and the pandemic pose immediate threats to healthcare expenditure and mortality rates. This calls for transforming healthcare systems away from one-on-one patient treatment into intelligent health systems, leveraging the recent advances of Internet of Things and smart sensors. Meanwhile, reinforcement learning (RL) has witnessed an intrinsic breakthrough in solving a variety of complex problems for distinct applications and services. Thus, this article presents a comprehensive survey of the recent models and techniques of RL that have been developed/used for supporting Intelligent-healthcare (I-health) systems. It can guide the readers to deeply understand the state-of-the-art regarding the use of RL in the context of I-health. Specifically, we first present an overview of the I-health systems' challenges, architecture, and how RL can benefit these systems. We then review the background and mathematical modeling of different RL, deep RL (DRL), and multiagent RL models. We highlight important guidelines on how to select the appropriate RL model for a given problem, and provide quantitative comparisons, showing the results of deploying key RL models in two scenarios that can be followed in monitoring applications. After that, we conduct an in-depth literature review on RL's applications in I-health systems, covering edge intelligence, smart core network, and dynamic treatment regimes. Finally, we highlight emerging challenges and future research directions to enhance RL's success in I-health systems, which opens the door for exploring some interesting and unsolved problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助欣慰若枫采纳,获得10
刚刚
上官若男应助林林林采纳,获得10
刚刚
李志豪完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
林霖完成签到,获得积分10
2秒前
Helic完成签到,获得积分10
3秒前
3秒前
3秒前
林结衣完成签到,获得积分10
3秒前
丘比特应助开心水风采纳,获得10
4秒前
Jiang_sir完成签到,获得积分10
4秒前
小李爱查文献完成签到,获得积分10
4秒前
风雅完成签到,获得积分10
4秒前
5秒前
卡拉肖客发布了新的文献求助10
5秒前
NexusExplorer应助lixiaofan采纳,获得10
5秒前
5秒前
teng完成签到,获得积分10
6秒前
summer应助滴答滴采纳,获得10
7秒前
7秒前
22完成签到,获得积分10
7秒前
7秒前
小雨发布了新的文献求助10
7秒前
7秒前
科研通AI6应助悠然采纳,获得10
7秒前
多C多快乐发布了新的文献求助10
8秒前
莫西莫西发布了新的文献求助10
8秒前
Guo99完成签到,获得积分10
9秒前
稳重一鸣完成签到,获得积分20
9秒前
机智亦云完成签到,获得积分10
9秒前
9秒前
小丑应助尕辉采纳,获得10
10秒前
10秒前
li发布了新的文献求助10
10秒前
Momomo应助务实的乘云采纳,获得10
10秒前
XuZ完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477701
求助须知:如何正确求助?哪些是违规求助? 4579485
关于积分的说明 14369133
捐赠科研通 4507697
什么是DOI,文献DOI怎么找? 2470120
邀请新用户注册赠送积分活动 1457068
关于科研通互助平台的介绍 1431055