MGCNRF: Prediction of Disease-Related miRNAs Based on Multiple Graph Convolutional Networks and Random Forest

随机森林 计算机科学 相似性(几何) 图形 数据挖掘 人工智能 机器学习 计算生物学 理论计算机科学 生物 图像(数学)
作者
Yi Yang,Yan Sun,Feng Li,Boxin Guan,Jin‐Xing Liu,Junliang Shang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15701-15709 被引量:3
标识
DOI:10.1109/tnnls.2023.3289182
摘要

Increasing microRNAs (miRNAs) have been confirmed to be inextricably linked to various diseases, and the discovery of their associations has become a routine way of treating diseases. To overcome the time-consuming and laborious shortcoming of traditional experiments in verifying the associations of miRNAs and diseases (MDAs), a variety of computational methods have emerged. However, these methods still have many shortcomings in terms of predictive performance and accuracy. In this study, a model based on multiple graph convolutional networks and random forest (MGCNRF) was proposed for the prediction MDAs. Specifically, MGCNRF first mapped miRNA functional similarity and sequence similarity, disease semantic similarity and target similarity, and the known MDAs into four different two-layer heterogeneous networks. Second, MGCNRF applied four heterogeneous networks into four different layered attention graph convolutional networks (GCNs), respectively, to extract MDA embeddings. Finally, MGCNRF integrated the embeddings of every MDA into the features of the miRNA-disease pair and predicted potential MDAs through the random forest (RF). Fivefold cross-validation was applied to verify the prediction performance of MGCNRF, which outperforms the other seven state-of-the-art methods by area under curve. Furthermore, the accuracy and the case studies of different diseases further demonstrate the scientific rationale of MGCNRF. In conclusion, MGCNRF can serve as a scientific tool for predicting potential MDAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
312034发布了新的文献求助10
刚刚
4秒前
付茂青完成签到 ,获得积分10
5秒前
专注寻菱完成签到,获得积分10
6秒前
Merlin应助陈三三采纳,获得30
7秒前
田様应助研友_ZAxKMn采纳,获得10
8秒前
忧虑的访梦完成签到 ,获得积分10
8秒前
10秒前
11秒前
13秒前
ED应助沉默的金鱼采纳,获得10
13秒前
14秒前
16秒前
18秒前
18秒前
小菜鸡发布了新的文献求助10
19秒前
19秒前
19秒前
连难胜完成签到,获得积分10
20秒前
研友_ZAxKMn发布了新的文献求助10
22秒前
Starry完成签到,获得积分10
23秒前
surina发布了新的文献求助10
23秒前
魏凡之发布了新的文献求助10
23秒前
巫青丝完成签到,获得积分10
24秒前
27秒前
核桃应助研友_ZAxKMn采纳,获得10
27秒前
小菜鸡完成签到,获得积分20
27秒前
虚心的宛亦完成签到,获得积分10
27秒前
28秒前
ding应助沉默凡梦采纳,获得10
28秒前
29秒前
SigRosa发布了新的文献求助10
30秒前
ttb发布了新的文献求助10
30秒前
活泼万言完成签到,获得积分10
32秒前
33秒前
想吃小面包完成签到 ,获得积分10
34秒前
好啦啦发布了新的文献求助10
35秒前
所所应助活力遥采纳,获得10
36秒前
内向翰完成签到,获得积分10
37秒前
别当真完成签到 ,获得积分10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541