MGCNRF: Prediction of Disease-Related miRNAs Based on Multiple Graph Convolutional Networks and Random Forest

随机森林 计算机科学 相似性(几何) 图形 数据挖掘 人工智能 机器学习 计算生物学 理论计算机科学 生物 图像(数学)
作者
Yi Yang,Yan Sun,Feng Li,Boxin Guan,Jin‐Xing Liu,Junliang Shang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15701-15709 被引量:7
标识
DOI:10.1109/tnnls.2023.3289182
摘要

Increasing microRNAs (miRNAs) have been confirmed to be inextricably linked to various diseases, and the discovery of their associations has become a routine way of treating diseases. To overcome the time-consuming and laborious shortcoming of traditional experiments in verifying the associations of miRNAs and diseases (MDAs), a variety of computational methods have emerged. However, these methods still have many shortcomings in terms of predictive performance and accuracy. In this study, a model based on multiple graph convolutional networks and random forest (MGCNRF) was proposed for the prediction MDAs. Specifically, MGCNRF first mapped miRNA functional similarity and sequence similarity, disease semantic similarity and target similarity, and the known MDAs into four different two-layer heterogeneous networks. Second, MGCNRF applied four heterogeneous networks into four different layered attention graph convolutional networks (GCNs), respectively, to extract MDA embeddings. Finally, MGCNRF integrated the embeddings of every MDA into the features of the miRNA-disease pair and predicted potential MDAs through the random forest (RF). Fivefold cross-validation was applied to verify the prediction performance of MGCNRF, which outperforms the other seven state-of-the-art methods by area under curve. Furthermore, the accuracy and the case studies of different diseases further demonstrate the scientific rationale of MGCNRF. In conclusion, MGCNRF can serve as a scientific tool for predicting potential MDAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助老迟到的阁采纳,获得10
刚刚
2秒前
2秒前
坚强安青发布了新的文献求助10
2秒前
柯安梦完成签到 ,获得积分20
2秒前
要减肥发布了新的文献求助10
4秒前
chen完成签到,获得积分10
4秒前
领导范儿应助刘泉采纳,获得10
4秒前
5秒前
Gino发布了新的文献求助10
5秒前
高分子物理不会完成签到,获得积分10
5秒前
吃人不眨眼应助徐小采纳,获得20
7秒前
7秒前
亚鲁发布了新的文献求助10
7秒前
star应助义气谷兰采纳,获得10
8秒前
高高完成签到,获得积分10
8秒前
8秒前
Gotyababy发布了新的文献求助10
9秒前
9秒前
上官若男应助阿瓒采纳,获得10
10秒前
10秒前
李健应助魔幻的访卉采纳,获得100
10秒前
11秒前
11秒前
英姑应助1213采纳,获得10
11秒前
BPATIENT应助糖炒栗子采纳,获得10
11秒前
十一一十完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
张晶晶发布了新的文献求助10
13秒前
13秒前
13秒前
大婷子发布了新的文献求助10
13秒前
14秒前
冬至发布了新的文献求助10
14秒前
pcr163应助yuuu采纳,获得50
15秒前
英姑应助坚强安青采纳,获得10
15秒前
czh发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532022
求助须知:如何正确求助?哪些是违规求助? 4620823
关于积分的说明 14574972
捐赠科研通 4560552
什么是DOI,文献DOI怎么找? 2498894
邀请新用户注册赠送积分活动 1478828
关于科研通互助平台的介绍 1450125