已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MGCNRF: Prediction of Disease-Related miRNAs Based on Multiple Graph Convolutional Networks and Random Forest

随机森林 计算机科学 相似性(几何) 图形 数据挖掘 人工智能 机器学习 计算生物学 理论计算机科学 生物 图像(数学)
作者
Yi Yang,Yan Sun,Feng Li,Boxin Guan,Jin‐Xing Liu,Junliang Shang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:2
标识
DOI:10.1109/tnnls.2023.3289182
摘要

Increasing microRNAs (miRNAs) have been confirmed to be inextricably linked to various diseases, and the discovery of their associations has become a routine way of treating diseases. To overcome the time-consuming and laborious shortcoming of traditional experiments in verifying the associations of miRNAs and diseases (MDAs), a variety of computational methods have emerged. However, these methods still have many shortcomings in terms of predictive performance and accuracy. In this study, a model based on multiple graph convolutional networks and random forest (MGCNRF) was proposed for the prediction MDAs. Specifically, MGCNRF first mapped miRNA functional similarity and sequence similarity, disease semantic similarity and target similarity, and the known MDAs into four different two-layer heterogeneous networks. Second, MGCNRF applied four heterogeneous networks into four different layered attention graph convolutional networks (GCNs), respectively, to extract MDA embeddings. Finally, MGCNRF integrated the embeddings of every MDA into the features of the miRNA-disease pair and predicted potential MDAs through the random forest (RF). Fivefold cross-validation was applied to verify the prediction performance of MGCNRF, which outperforms the other seven state-of-the-art methods by area under curve. Furthermore, the accuracy and the case studies of different diseases further demonstrate the scientific rationale of MGCNRF. In conclusion, MGCNRF can serve as a scientific tool for predicting potential MDAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助粗暴的海豚采纳,获得10
1秒前
研友_VZG7GZ应助hhhhhhhhhhh采纳,获得10
4秒前
半夏完成签到 ,获得积分10
4秒前
科研通AI2S应助风卡采纳,获得10
7秒前
别急我先送完成签到,获得积分10
7秒前
17秒前
慕青应助海阔天空采纳,获得10
18秒前
24秒前
24秒前
25秒前
27秒前
汉堡包应助Zerorrrr采纳,获得10
29秒前
30秒前
30秒前
31秒前
cheng发布了新的文献求助10
32秒前
快乐科研梁完成签到,获得积分10
36秒前
蜗牛发布了新的文献求助10
36秒前
37秒前
折原蘑菇发布了新的文献求助10
37秒前
阳光女孩完成签到,获得积分10
40秒前
hd发布了新的文献求助10
41秒前
43秒前
乐乐应助许七安采纳,获得10
43秒前
44秒前
xiaojcom应助王辰北采纳,获得10
48秒前
要减肥的婷冉完成签到,获得积分10
48秒前
微笑的鱼发布了新的文献求助10
50秒前
JamesPei应助成就的千凡采纳,获得10
51秒前
52秒前
55秒前
55秒前
Yunus完成签到,获得积分20
56秒前
文艺的小刺猬完成签到 ,获得积分10
57秒前
59秒前
Yunus发布了新的文献求助10
1分钟前
CodeCraft应助谷捣猫宁采纳,获得10
1分钟前
笨笨的复天完成签到 ,获得积分10
1分钟前
cdy完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162031
求助须知:如何正确求助?哪些是违规求助? 2813164
关于积分的说明 7898852
捐赠科研通 2472153
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129