MGCNRF: Prediction of Disease-Related miRNAs Based on Multiple Graph Convolutional Networks and Random Forest

随机森林 计算机科学 相似性(几何) 图形 数据挖掘 人工智能 机器学习 计算生物学 理论计算机科学 生物 图像(数学)
作者
Yi Yang,Yan Sun,Feng Li,Boxin Guan,Jin‐Xing Liu,Junliang Shang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15701-15709 被引量:7
标识
DOI:10.1109/tnnls.2023.3289182
摘要

Increasing microRNAs (miRNAs) have been confirmed to be inextricably linked to various diseases, and the discovery of their associations has become a routine way of treating diseases. To overcome the time-consuming and laborious shortcoming of traditional experiments in verifying the associations of miRNAs and diseases (MDAs), a variety of computational methods have emerged. However, these methods still have many shortcomings in terms of predictive performance and accuracy. In this study, a model based on multiple graph convolutional networks and random forest (MGCNRF) was proposed for the prediction MDAs. Specifically, MGCNRF first mapped miRNA functional similarity and sequence similarity, disease semantic similarity and target similarity, and the known MDAs into four different two-layer heterogeneous networks. Second, MGCNRF applied four heterogeneous networks into four different layered attention graph convolutional networks (GCNs), respectively, to extract MDA embeddings. Finally, MGCNRF integrated the embeddings of every MDA into the features of the miRNA-disease pair and predicted potential MDAs through the random forest (RF). Fivefold cross-validation was applied to verify the prediction performance of MGCNRF, which outperforms the other seven state-of-the-art methods by area under curve. Furthermore, the accuracy and the case studies of different diseases further demonstrate the scientific rationale of MGCNRF. In conclusion, MGCNRF can serve as a scientific tool for predicting potential MDAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助Snoopy采纳,获得10
1秒前
yf2011108002完成签到,获得积分20
1秒前
2秒前
yu发布了新的文献求助10
3秒前
3秒前
HHH发布了新的文献求助10
3秒前
3秒前
3秒前
呆熊完成签到,获得积分10
4秒前
笑点低的铁身完成签到 ,获得积分10
4秒前
5秒前
111完成签到,获得积分10
5秒前
5秒前
薛十七应助温婉的篮球采纳,获得10
6秒前
liang应助狂野傲珊采纳,获得10
6秒前
颜靖仇发布了新的文献求助10
6秒前
Hu发布了新的文献求助10
6秒前
7秒前
7秒前
爆米花应助加油加油采纳,获得10
7秒前
归尘应助岩伴采纳,获得10
7秒前
无花果应助Rosemary采纳,获得10
8秒前
天天快乐应助口羊采纳,获得10
8秒前
huskies发布了新的文献求助10
8秒前
LLCHEN完成签到 ,获得积分10
9秒前
脑洞疼应助lxjjj采纳,获得10
9秒前
皮咻完成签到,获得积分10
10秒前
mooonyue发布了新的文献求助10
10秒前
君君完成签到,获得积分10
11秒前
Aura发布了新的文献求助10
12秒前
13秒前
情怀应助呆熊采纳,获得10
13秒前
14秒前
KKLJOJ发布了新的文献求助10
14秒前
14秒前
14秒前
111发布了新的文献求助10
15秒前
小路发布了新的文献求助10
15秒前
有怀完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072971
求助须知:如何正确求助?哪些是违规求助? 4293165
关于积分的说明 13377479
捐赠科研通 4114472
什么是DOI,文献DOI怎么找? 2252995
邀请新用户注册赠送积分活动 1257787
关于科研通互助平台的介绍 1190665