亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MGCNRF: Prediction of Disease-Related miRNAs Based on Multiple Graph Convolutional Networks and Random Forest

随机森林 计算机科学 相似性(几何) 图形 数据挖掘 人工智能 机器学习 计算生物学 理论计算机科学 生物 图像(数学)
作者
Yi Yang,Yan Sun,Feng Li,Boxin Guan,Jin‐Xing Liu,Junliang Shang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15701-15709 被引量:7
标识
DOI:10.1109/tnnls.2023.3289182
摘要

Increasing microRNAs (miRNAs) have been confirmed to be inextricably linked to various diseases, and the discovery of their associations has become a routine way of treating diseases. To overcome the time-consuming and laborious shortcoming of traditional experiments in verifying the associations of miRNAs and diseases (MDAs), a variety of computational methods have emerged. However, these methods still have many shortcomings in terms of predictive performance and accuracy. In this study, a model based on multiple graph convolutional networks and random forest (MGCNRF) was proposed for the prediction MDAs. Specifically, MGCNRF first mapped miRNA functional similarity and sequence similarity, disease semantic similarity and target similarity, and the known MDAs into four different two-layer heterogeneous networks. Second, MGCNRF applied four heterogeneous networks into four different layered attention graph convolutional networks (GCNs), respectively, to extract MDA embeddings. Finally, MGCNRF integrated the embeddings of every MDA into the features of the miRNA-disease pair and predicted potential MDAs through the random forest (RF). Fivefold cross-validation was applied to verify the prediction performance of MGCNRF, which outperforms the other seven state-of-the-art methods by area under curve. Furthermore, the accuracy and the case studies of different diseases further demonstrate the scientific rationale of MGCNRF. In conclusion, MGCNRF can serve as a scientific tool for predicting potential MDAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qingfeng完成签到,获得积分10
4秒前
FashionBoy应助犬来八荒采纳,获得20
4秒前
lx完成签到,获得积分10
6秒前
bkagyin应助张璟博采纳,获得10
14秒前
踏实白柏完成签到 ,获得积分10
35秒前
36秒前
明亮的老四完成签到 ,获得积分10
51秒前
51秒前
好人发布了新的文献求助30
58秒前
好人完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助Epiphany采纳,获得10
1分钟前
1分钟前
张璟博发布了新的文献求助10
1分钟前
犬来八荒发布了新的文献求助20
1分钟前
可爱的函函应助张璟博采纳,获得10
1分钟前
1分钟前
Epiphany发布了新的文献求助10
1分钟前
1分钟前
TXZ06发布了新的文献求助30
1分钟前
1分钟前
冷酷愚志完成签到,获得积分10
1分钟前
2分钟前
饼子完成签到 ,获得积分10
2分钟前
2分钟前
Epiphany完成签到,获得积分10
2分钟前
3分钟前
TXZ06发布了新的文献求助30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
kuoping完成签到,获得积分0
4分钟前
4分钟前
4分钟前
TXZ06发布了新的文献求助30
4分钟前
4分钟前
4分钟前
4分钟前
Yuuuan完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634920
求助须知:如何正确求助?哪些是违规求助? 4734247
关于积分的说明 14989490
捐赠科研通 4792667
什么是DOI,文献DOI怎么找? 2559733
邀请新用户注册赠送积分活动 1520066
关于科研通互助平台的介绍 1480128