人血清白蛋白
荧光
硫黄素
化学
转身(生物化学)
生物物理学
色谱法
生物化学
生物
物理
疾病
量子力学
病理
阿尔茨海默病
医学
作者
Hanyu Chen,Chi-Cheng Teng,Pin‐Han Lin,Ching‐Ping Liu,Wei‐Min Liu,Li‐Kang Chu
标识
DOI:10.1002/cbic.202300370
摘要
Efficient quantification of the affinity of a drug and the targeted protein is critical for strategic drug design. Among the various molecules, turn-on fluorescent probes are the most promising signal transducers to reveal the binding strength and site-specificity of designed drugs. However, the conventional method of measuring the binding ability of turn-on fluorescent probes by using the fractional occupancy under the law of mass action is time-consuming and a massive sample is required. Here, we report a new method, called dual-concentration ratio method, for quantifying the binding affinity of fluorescent probes and human serum albumin (HSA). Temperature-dependent fluorescence intensity ratios of a one-to-one complex (L ⋅ HSA) for a turn-on fluorescent probe (L), e. g., ThT (thioflavin T) or DG (dansylglycine), with HSA at two different values of [L]0 /[HSA]0 under the constraint [HSA]0 >[L]0 were collected. The van't Hoff analysis on these association constants further resulted in the thermodynamic properties. Since only two samples at different [L]0 /[HSA]0 are required without the need of [L]0 /[HSA]0 at a wide range, the dual-concentration ratio method is an easy way to greatly reduce the amounts of fluorescent probes and proteins, as well as the acquisition time.
科研通智能强力驱动
Strongly Powered by AbleSci AI