EEG-Based Parkinson's Disease Recognition via Attention-Based Sparse Graph Convolutional Neural Network

脑电图 卷积神经网络 计算机科学 人工智能 图形 颞叶 召回 模式识别(心理学) 机器学习 心理学 癫痫 认知心理学 神经科学 理论计算机科学
作者
Hongli Chang,Bo Liu,Yuan Zong,Cheng Lu,Xuenan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5216-5224 被引量:33
标识
DOI:10.1109/jbhi.2023.3292452
摘要

Parkinson's disease (PD) is a complicated neurological ailment that affects both the physical and mental wellness of elderly individuals which makes it problematic to diagnose in its initial stages. Electroencephalogram (EEG) promises to be an efficient and cost-effective method for promptly detecting cognitive impairment in PD. Nevertheless, prevailing diagnostic practices utilizing EEG features have failed to examine the functional connectivity among EEG channels and the response of associated brain areas causing an unsatisfactory level of precision. Here, we construct an attention-based sparse graph convolutional neural network (ASGCNN) for diagnosing PD. Our ASGCNN model uses a graph structure to represent channel relationships, the attention mechanism for selecting channels, and the L1 norm to capture channel sparsity. We conduct extensive experiments on the publicly available PD auditory oddball dataset, which consists of 24 PD patients (under ON/OFF drug status) and 24 matched controls, to validate the effectiveness of our method. Our results show that the proposed method provides better results compared to the publicly available baselines. The achieved scores for Recall, Precision, F1-score, Accuracy and Kappa measures are 90.36%, 88.43%, 88.41%, 87.67%, and 75.24%, respectively. Our study reveals that the frontal and temporal lobes show significant differences between PD patients and healthy individuals. In addition, EEG features extracted by ASGCNN demonstrate significant asymmetry in the frontal lobe among PD patients. These findings can offer a basis for the establishment of a clinical system for intelligent diagnosis of PD by using auditory cognitive impairment features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
honey发布了新的文献求助10
刚刚
orixero应助萝卜采纳,获得10
刚刚
刚刚
Ecokarster应助加鱼采纳,获得10
刚刚
1秒前
哈迪发布了新的文献求助10
2秒前
2秒前
和春住发布了新的文献求助10
3秒前
纯爱战神发布了新的文献求助10
3秒前
3秒前
6秒前
脑洞疼应助goosnake采纳,获得10
6秒前
小阳发布了新的文献求助10
6秒前
pirateharbor完成签到,获得积分10
7秒前
赘婿应助哈迪采纳,获得10
8秒前
领导范儿应助落寞凌波采纳,获得10
9秒前
9秒前
和春住完成签到,获得积分10
10秒前
KanmenRider完成签到,获得积分10
10秒前
fxsg完成签到,获得积分10
11秒前
ymh发布了新的文献求助10
12秒前
12秒前
12秒前
飞行中的鱼完成签到,获得积分10
13秒前
14秒前
gyh发布了新的文献求助10
15秒前
Gengar发布了新的文献求助10
16秒前
单薄的英姑完成签到 ,获得积分10
16秒前
暮秋完成签到,获得积分10
16秒前
练得身形似鹤形完成签到 ,获得积分10
17秒前
儒雅雅山发布了新的文献求助10
17秒前
灵寒完成签到 ,获得积分10
18秒前
18秒前
吊炸天完成签到,获得积分10
18秒前
好的哥完成签到,获得积分10
20秒前
哈迪完成签到,获得积分10
20秒前
21秒前
自信雅琴完成签到,获得积分10
22秒前
zhangyu应助芒果好高采纳,获得10
22秒前
言无间发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014