EEG-Based Parkinson's Disease Recognition via Attention-Based Sparse Graph Convolutional Neural Network

脑电图 卷积神经网络 计算机科学 人工智能 图形 颞叶 召回 模式识别(心理学) 机器学习 心理学 癫痫 认知心理学 神经科学 理论计算机科学
作者
Hongli Chang,Bo Liu,Yuan Zong,Cheng Lu,Xuenan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5216-5224 被引量:65
标识
DOI:10.1109/jbhi.2023.3292452
摘要

Parkinson's disease (PD) is a complicated neurological ailment that affects both the physical and mental wellness of elderly individuals which makes it problematic to diagnose in its initial stages. Electroencephalogram (EEG) promises to be an efficient and cost-effective method for promptly detecting cognitive impairment in PD. Nevertheless, prevailing diagnostic practices utilizing EEG features have failed to examine the functional connectivity among EEG channels and the response of associated brain areas causing an unsatisfactory level of precision. Here, we construct an attention-based sparse graph convolutional neural network (ASGCNN) for diagnosing PD. Our ASGCNN model uses a graph structure to represent channel relationships, the attention mechanism for selecting channels, and the L1 norm to capture channel sparsity. We conduct extensive experiments on the publicly available PD auditory oddball dataset, which consists of 24 PD patients (under ON/OFF drug status) and 24 matched controls, to validate the effectiveness of our method. Our results show that the proposed method provides better results compared to the publicly available baselines. The achieved scores for Recall, Precision, F1-score, Accuracy and Kappa measures are 90.36%, 88.43%, 88.41%, 87.67%, and 75.24%, respectively. Our study reveals that the frontal and temporal lobes show significant differences between PD patients and healthy individuals. In addition, EEG features extracted by ASGCNN demonstrate significant asymmetry in the frontal lobe among PD patients. These findings can offer a basis for the establishment of a clinical system for intelligent diagnosis of PD by using auditory cognitive impairment features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅夏之完成签到,获得积分10
刚刚
hy发布了新的文献求助10
刚刚
刚刚
bkagyin应助啧啧啧采纳,获得10
1秒前
1秒前
曾经富发布了新的文献求助10
1秒前
1秒前
听雨应助桃子e采纳,获得10
1秒前
潇洒紫真发布了新的文献求助10
2秒前
科研通AI2S应助Catherine采纳,获得10
2秒前
sss发布了新的文献求助10
2秒前
大萌完成签到,获得积分10
2秒前
bkagyin应助QQQ采纳,获得10
2秒前
2秒前
2秒前
3秒前
逍遥猪皮完成签到,获得积分10
3秒前
布丁大师完成签到,获得积分10
3秒前
qwq完成签到,获得积分10
3秒前
可乐加冰发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
典雅夏之发布了新的文献求助10
4秒前
积极的含芙完成签到,获得积分20
4秒前
4秒前
科研小小白完成签到,获得积分10
5秒前
淡淡友瑶发布了新的文献求助10
5秒前
lbw关注了科研通微信公众号
5秒前
张yang发布了新的文献求助10
5秒前
鲁丁丁完成签到 ,获得积分10
5秒前
5秒前
林林发布了新的文献求助10
5秒前
6秒前
a成完成签到,获得积分10
6秒前
FashionBoy应助childe采纳,获得10
6秒前
DrKeys发布了新的文献求助20
6秒前
6秒前
维生素发布了新的文献求助10
6秒前
小火孩发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440