EEG-Based Parkinson's Disease Recognition via Attention-Based Sparse Graph Convolutional Neural Network

脑电图 卷积神经网络 计算机科学 人工智能 图形 颞叶 召回 模式识别(心理学) 机器学习 心理学 癫痫 认知心理学 神经科学 理论计算机科学
作者
Hongli Chang,Bo Liu,Yuan Zong,Cheng Lu,Xuenan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5216-5224 被引量:26
标识
DOI:10.1109/jbhi.2023.3292452
摘要

Parkinson's disease (PD) is a complicated neurological ailment that affects both the physical and mental wellness of elderly individuals which makes it problematic to diagnose in its initial stages. Electroencephalogram (EEG) promises to be an efficient and cost-effective method for promptly detecting cognitive impairment in PD. Nevertheless, prevailing diagnostic practices utilizing EEG features have failed to examine the functional connectivity among EEG channels and the response of associated brain areas causing an unsatisfactory level of precision. Here, we construct an attention-based sparse graph convolutional neural network (ASGCNN) for diagnosing PD. Our ASGCNN model uses a graph structure to represent channel relationships, the attention mechanism for selecting channels, and the L1 norm to capture channel sparsity. We conduct extensive experiments on the publicly available PD auditory oddball dataset, which consists of 24 PD patients (under ON/OFF drug status) and 24 matched controls, to validate the effectiveness of our method. Our results show that the proposed method provides better results compared to the publicly available baselines. The achieved scores for Recall, Precision, F1-score, Accuracy and Kappa measures are 90.36%, 88.43%, 88.41%, 87.67%, and 75.24%, respectively. Our study reveals that the frontal and temporal lobes show significant differences between PD patients and healthy individuals. In addition, EEG features extracted by ASGCNN demonstrate significant asymmetry in the frontal lobe among PD patients. These findings can offer a basis for the establishment of a clinical system for intelligent diagnosis of PD by using auditory cognitive impairment features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
酶没美镁完成签到,获得积分10
刚刚
小二郎应助Rui采纳,获得10
刚刚
Libra完成签到,获得积分10
1秒前
雪儿发布了新的文献求助30
1秒前
无悔呀发布了新的文献求助10
1秒前
小巧的可仁完成签到 ,获得积分10
1秒前
1秒前
zhao完成签到,获得积分10
2秒前
masu发布了新的文献求助10
2秒前
冷酷尔琴发布了新的文献求助10
3秒前
Ll发布了新的文献求助10
3秒前
优雅山柏完成签到,获得积分10
3秒前
XinyiZhang发布了新的文献求助10
3秒前
小蘑菇应助yangyang采纳,获得10
3秒前
慕青应助欢欢采纳,获得10
4秒前
小憩完成签到,获得积分10
4秒前
南乔发布了新的文献求助10
4秒前
张静静发布了新的文献求助10
5秒前
云儿完成签到,获得积分10
5秒前
淡淡的洋葱完成签到,获得积分10
5秒前
小洲王先生完成签到,获得积分10
6秒前
6秒前
dd完成签到,获得积分10
6秒前
6秒前
7秒前
CCL应助kk2024采纳,获得50
7秒前
wjs0406完成签到,获得积分10
7秒前
自爱悠然发布了新的文献求助10
7秒前
贺雪完成签到,获得积分10
8秒前
8秒前
玉yu发布了新的文献求助10
9秒前
深情秋刀鱼完成签到,获得积分10
9秒前
星辰大海应助冷酷尔琴采纳,获得10
9秒前
9秒前
9秒前
隐形的大有完成签到,获得积分10
10秒前
浩浩大人发布了新的文献求助10
10秒前
buno应助圈圈采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740