EEG-Based Parkinson's Disease Recognition via Attention-Based Sparse Graph Convolutional Neural Network

脑电图 卷积神经网络 计算机科学 人工智能 图形 颞叶 召回 模式识别(心理学) 机器学习 心理学 癫痫 认知心理学 神经科学 理论计算机科学
作者
Hongli Chang,Bo Liu,Yuan Zong,Cheng Lu,Xuenan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5216-5224 被引量:60
标识
DOI:10.1109/jbhi.2023.3292452
摘要

Parkinson's disease (PD) is a complicated neurological ailment that affects both the physical and mental wellness of elderly individuals which makes it problematic to diagnose in its initial stages. Electroencephalogram (EEG) promises to be an efficient and cost-effective method for promptly detecting cognitive impairment in PD. Nevertheless, prevailing diagnostic practices utilizing EEG features have failed to examine the functional connectivity among EEG channels and the response of associated brain areas causing an unsatisfactory level of precision. Here, we construct an attention-based sparse graph convolutional neural network (ASGCNN) for diagnosing PD. Our ASGCNN model uses a graph structure to represent channel relationships, the attention mechanism for selecting channels, and the L1 norm to capture channel sparsity. We conduct extensive experiments on the publicly available PD auditory oddball dataset, which consists of 24 PD patients (under ON/OFF drug status) and 24 matched controls, to validate the effectiveness of our method. Our results show that the proposed method provides better results compared to the publicly available baselines. The achieved scores for Recall, Precision, F1-score, Accuracy and Kappa measures are 90.36%, 88.43%, 88.41%, 87.67%, and 75.24%, respectively. Our study reveals that the frontal and temporal lobes show significant differences between PD patients and healthy individuals. In addition, EEG features extracted by ASGCNN demonstrate significant asymmetry in the frontal lobe among PD patients. These findings can offer a basis for the establishment of a clinical system for intelligent diagnosis of PD by using auditory cognitive impairment features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭a完成签到,获得积分10
刚刚
刚刚
浮游应助梦醒采纳,获得10
1秒前
钟小先生完成签到 ,获得积分10
2秒前
ding应助追寻绮波采纳,获得10
2秒前
大飞66发布了新的文献求助30
2秒前
2秒前
明明发布了新的文献求助10
4秒前
Flora发布了新的文献求助10
5秒前
mmz完成签到 ,获得积分10
5秒前
hello发布了新的文献求助10
5秒前
6秒前
8秒前
8秒前
bcl完成签到,获得积分10
10秒前
导师老八发布了新的文献求助10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
所所应助胡萝卜采纳,获得10
13秒前
flow发布了新的文献求助10
13秒前
winjay完成签到,获得积分10
14秒前
jinzhou发布了新的文献求助10
16秒前
粽子完成签到,获得积分10
18秒前
爆米花应助TT2022采纳,获得10
18秒前
18秒前
khlkkfc发布了新的文献求助10
19秒前
结实的泥猴桃完成签到 ,获得积分10
19秒前
英俊的铭应助小白采纳,获得10
20秒前
月光入梦完成签到 ,获得积分10
21秒前
浮游应助小野菌采纳,获得10
22秒前
田様应助123321采纳,获得10
22秒前
23秒前
23秒前
导师老八发布了新的文献求助30
23秒前
小二郎应助略略略采纳,获得10
24秒前
24秒前
JX完成签到,获得积分10
26秒前
田様应助溪泉采纳,获得10
26秒前
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
International Handbook of Earthquake & Engineering Seismology, Part B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5146677
求助须知:如何正确求助?哪些是违规求助? 4343554
关于积分的说明 13527098
捐赠科研通 4184701
什么是DOI,文献DOI怎么找? 2294782
邀请新用户注册赠送积分活动 1295250
关于科研通互助平台的介绍 1238341