Global–Local Discriminative Representation Learning Network for Viewpoint-Aware Vehicle Re-Identification in Intelligent Transportation

判别式 杠杆(统计) 计算机科学 人工智能 特征学习 机器学习 公制(单位) 智能交通系统 鉴定(生物学) 特征(语言学) 特征提取 人工神经网络 匹配(统计) 工程类 语言学 运营管理 土木工程 植物 哲学 统计 数学 生物
作者
Xiaobo Chen,Haoze Yu,Feng Zhao,Yu Hu,Zuoyong Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:9
标识
DOI:10.1109/tim.2023.3295011
摘要

Vehicle re-identification (Re-ID) that aims at matching vehicles across multiple non-overlapping cameras is prevalently recognized as an important application of computer vision in intelligent transportation. One of the major challenges is to extract discriminative features that are resistant to viewpoint variations. To address this problem, this paper proposes a novel vehicle Re-ID model from the perspectives of effective feature fusion and adaptive part attention. Firstly, we put forward a channel attention-based feature fusion (CAFF) module that can learn the significance of features from different layers of the backbone network. In such a way, our model can leverage complementary features for vehicle Re-ID. Then, to address the viewpoint variation problem, we present an adaptive part attention (APA) module that evaluates the significance of local vehicle parts based on the visible areas and the extracted features. By doing so, our model can concentrate more on the vehicle parts with rich discriminative information while paying less attention to the parts with limited distinctive capability. Finally, the whole model is trained by simultaneous classification and metric learning. Experiments on two large-scale vehicle Re-ID datasets are carried out to evaluate the proposed model. The results show that our model achieves competing performance compared with other state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhhh_xt完成签到,获得积分10
1秒前
小白完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
小马的可爱老婆完成签到,获得积分10
1秒前
1秒前
cyy1226发布了新的文献求助10
1秒前
wwww完成签到,获得积分10
1秒前
文献小聂发布了新的文献求助10
1秒前
2秒前
蔺映秋完成签到,获得积分10
2秒前
hhhhhhan616完成签到,获得积分10
3秒前
3秒前
yu完成签到,获得积分20
3秒前
3秒前
728发布了新的文献求助10
3秒前
科研通AI2S应助塵埃采纳,获得10
4秒前
4秒前
YB完成签到,获得积分10
5秒前
yyq617569158完成签到,获得积分20
5秒前
Csy完成签到,获得积分10
5秒前
奋斗静蕾发布了新的文献求助10
5秒前
5秒前
6秒前
柏莉发布了新的文献求助10
6秒前
Youth完成签到,获得积分10
7秒前
7秒前
7秒前
coco发布了新的文献求助10
7秒前
我不是笨蛋完成签到,获得积分10
7秒前
XXXXX完成签到 ,获得积分10
7秒前
7秒前
CipherSage应助cyy1226采纳,获得10
8秒前
yan发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
机灵水卉发布了新的文献求助10
8秒前
Kiki完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997