已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Global–Local Discriminative Representation Learning Network for Viewpoint-Aware Vehicle Re-Identification in Intelligent Transportation

判别式 杠杆(统计) 计算机科学 人工智能 特征学习 机器学习 公制(单位) 智能交通系统 鉴定(生物学) 特征(语言学) 特征提取 人工神经网络 匹配(统计) 工程类 语言学 运营管理 土木工程 植物 哲学 统计 数学 生物
作者
Xiaobo Chen,Haoze Yu,Feng Zhao,Yu Hu,Zuoyong Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:9
标识
DOI:10.1109/tim.2023.3295011
摘要

Vehicle re-identification (Re-ID) that aims at matching vehicles across multiple non-overlapping cameras is prevalently recognized as an important application of computer vision in intelligent transportation. One of the major challenges is to extract discriminative features that are resistant to viewpoint variations. To address this problem, this paper proposes a novel vehicle Re-ID model from the perspectives of effective feature fusion and adaptive part attention. Firstly, we put forward a channel attention-based feature fusion (CAFF) module that can learn the significance of features from different layers of the backbone network. In such a way, our model can leverage complementary features for vehicle Re-ID. Then, to address the viewpoint variation problem, we present an adaptive part attention (APA) module that evaluates the significance of local vehicle parts based on the visible areas and the extracted features. By doing so, our model can concentrate more on the vehicle parts with rich discriminative information while paying less attention to the parts with limited distinctive capability. Finally, the whole model is trained by simultaneous classification and metric learning. Experiments on two large-scale vehicle Re-ID datasets are carried out to evaluate the proposed model. The results show that our model achieves competing performance compared with other state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高兴1江完成签到,获得积分10
1秒前
2秒前
6秒前
充电宝应助andrele采纳,获得10
6秒前
小蘑菇应助lc采纳,获得10
7秒前
英俊的铭应助wcwpl采纳,获得10
7秒前
8秒前
洋洋洋完成签到 ,获得积分10
8秒前
乐乐应助牛马采纳,获得10
9秒前
乐观的颦发布了新的文献求助10
9秒前
Lonry驳回了Lucas应助
9秒前
闪闪发光的珊珊完成签到,获得积分10
10秒前
gaogao发布了新的文献求助20
10秒前
11秒前
11秒前
今后应助tufuczy采纳,获得10
11秒前
12秒前
NexusExplorer应助binwu采纳,获得30
14秒前
科研通AI6应助zli采纳,获得10
14秒前
16秒前
荆玉豪完成签到 ,获得积分10
16秒前
Azuiaaa应助cc采纳,获得10
17秒前
17秒前
17秒前
gexzygg应助去月球数星星采纳,获得10
18秒前
爆米花应助去月球数星星采纳,获得10
18秒前
莉莉发布了新的文献求助10
18秒前
chengche发布了新的文献求助10
21秒前
祁尒发布了新的文献求助10
23秒前
牛马发布了新的文献求助10
23秒前
Radon完成签到,获得积分10
25秒前
senli2018发布了新的文献求助10
25秒前
徐志豪发布了新的文献求助10
26秒前
26秒前
干净寻冬完成签到,获得积分10
27秒前
zli发布了新的文献求助30
28秒前
Radon发布了新的文献求助10
29秒前
丘比特应助落花采纳,获得10
29秒前
彭于晏应助敏哇哇哇采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554475
求助须知:如何正确求助?哪些是违规求助? 4639080
关于积分的说明 14655090
捐赠科研通 4580870
什么是DOI,文献DOI怎么找? 2512482
邀请新用户注册赠送积分活动 1487276
关于科研通互助平台的介绍 1458165