亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Global–Local Discriminative Representation Learning Network for Viewpoint-Aware Vehicle Re-Identification in Intelligent Transportation

判别式 杠杆(统计) 计算机科学 人工智能 特征学习 机器学习 公制(单位) 智能交通系统 鉴定(生物学) 特征(语言学) 特征提取 人工神经网络 匹配(统计) 工程类 统计 土木工程 哲学 运营管理 生物 植物 语言学 数学
作者
Xiaobo Chen,Haoze Yu,Feng Zhao,Yu Hu,Zuoyong Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:9
标识
DOI:10.1109/tim.2023.3295011
摘要

Vehicle re-identification (Re-ID) that aims at matching vehicles across multiple non-overlapping cameras is prevalently recognized as an important application of computer vision in intelligent transportation. One of the major challenges is to extract discriminative features that are resistant to viewpoint variations. To address this problem, this paper proposes a novel vehicle Re-ID model from the perspectives of effective feature fusion and adaptive part attention. Firstly, we put forward a channel attention-based feature fusion (CAFF) module that can learn the significance of features from different layers of the backbone network. In such a way, our model can leverage complementary features for vehicle Re-ID. Then, to address the viewpoint variation problem, we present an adaptive part attention (APA) module that evaluates the significance of local vehicle parts based on the visible areas and the extracted features. By doing so, our model can concentrate more on the vehicle parts with rich discriminative information while paying less attention to the parts with limited distinctive capability. Finally, the whole model is trained by simultaneous classification and metric learning. Experiments on two large-scale vehicle Re-ID datasets are carried out to evaluate the proposed model. The results show that our model achieves competing performance compared with other state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccl完成签到,获得积分10
刚刚
Lucas应助生动项链采纳,获得10
4秒前
17秒前
冷静新烟完成签到,获得积分20
18秒前
舒苏完成签到 ,获得积分10
24秒前
所所应助左白易采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
小一发布了新的文献求助10
59秒前
山野有雾都应助andrele采纳,获得10
1分钟前
mammer完成签到 ,获得积分10
1分钟前
小二郎应助体贴的老太采纳,获得10
1分钟前
Jadyn_GU关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
1分钟前
Nnaao发布了新的文献求助10
1分钟前
yang完成签到 ,获得积分10
1分钟前
可爱的函函应助Nnaao采纳,获得10
1分钟前
1分钟前
左白易发布了新的文献求助10
2分钟前
guanoo完成签到,获得积分10
2分钟前
左白易完成签到,获得积分20
2分钟前
2分钟前
2分钟前
花壳在逃野猪完成签到,获得积分10
2分钟前
harry发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
esbd发布了新的文献求助10
2分钟前
rofsc完成签到 ,获得积分10
2分钟前
张童鞋完成签到 ,获得积分10
3分钟前
麦子要当写手完成签到,获得积分10
3分钟前
科研通AI2S应助zzz采纳,获得10
3分钟前
3分钟前
bala发布了新的文献求助20
3分钟前
浮游应助ywy采纳,获得10
3分钟前
zqq完成签到,获得积分0
3分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346096
求助须知:如何正确求助?哪些是违规求助? 4480859
关于积分的说明 13946918
捐赠科研通 4378477
什么是DOI,文献DOI怎么找? 2405890
邀请新用户注册赠送积分活动 1398466
关于科研通互助平台的介绍 1371066