Global–Local Discriminative Representation Learning Network for Viewpoint-Aware Vehicle Re-Identification in Intelligent Transportation

判别式 杠杆(统计) 计算机科学 人工智能 特征学习 机器学习 公制(单位) 智能交通系统 鉴定(生物学) 特征(语言学) 特征提取 人工神经网络 匹配(统计) 工程类 语言学 运营管理 土木工程 植物 哲学 统计 数学 生物
作者
Xiaobo Chen,Haoze Yu,Feng Zhao,Yu Hu,Zuoyong Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:9
标识
DOI:10.1109/tim.2023.3295011
摘要

Vehicle re-identification (Re-ID) that aims at matching vehicles across multiple non-overlapping cameras is prevalently recognized as an important application of computer vision in intelligent transportation. One of the major challenges is to extract discriminative features that are resistant to viewpoint variations. To address this problem, this paper proposes a novel vehicle Re-ID model from the perspectives of effective feature fusion and adaptive part attention. Firstly, we put forward a channel attention-based feature fusion (CAFF) module that can learn the significance of features from different layers of the backbone network. In such a way, our model can leverage complementary features for vehicle Re-ID. Then, to address the viewpoint variation problem, we present an adaptive part attention (APA) module that evaluates the significance of local vehicle parts based on the visible areas and the extracted features. By doing so, our model can concentrate more on the vehicle parts with rich discriminative information while paying less attention to the parts with limited distinctive capability. Finally, the whole model is trained by simultaneous classification and metric learning. Experiments on two large-scale vehicle Re-ID datasets are carried out to evaluate the proposed model. The results show that our model achieves competing performance compared with other state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助zSmart采纳,获得10
1秒前
英姑应助柔弱翎采纳,获得30
2秒前
2秒前
鱼不鱼完成签到,获得积分10
4秒前
5秒前
彭半梦发布了新的文献求助10
5秒前
env完成签到,获得积分10
6秒前
文艺的曼柔完成签到 ,获得积分10
6秒前
碧蓝的盼夏完成签到,获得积分10
6秒前
单薄茗完成签到,获得积分10
7秒前
7秒前
科研通AI6应助木棉哆哆采纳,获得10
7秒前
雪凝清霜发布了新的文献求助10
7秒前
8秒前
刘稀完成签到,获得积分10
8秒前
miaomiao完成签到,获得积分10
9秒前
陆菱柒发布了新的文献求助10
9秒前
9秒前
阔达的金鱼完成签到,获得积分10
9秒前
是我完成签到,获得积分10
9秒前
iuuu发布了新的文献求助10
10秒前
lhy发布了新的文献求助10
10秒前
11秒前
Lily完成签到,获得积分10
11秒前
11秒前
彭半梦完成签到,获得积分10
11秒前
12秒前
易晨曦发布了新的文献求助10
12秒前
聪明的可愁完成签到,获得积分10
12秒前
核桃发布了新的文献求助10
12秒前
12秒前
wanci应助xzh采纳,获得10
12秒前
LY完成签到 ,获得积分10
13秒前
单薄的尔烟完成签到 ,获得积分10
13秒前
13秒前
14秒前
可爱的函函应助CA737采纳,获得10
14秒前
研友_VZG7GZ应助香香香采纳,获得10
14秒前
zSmart发布了新的文献求助10
14秒前
漂亮豁完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192215
求助须知:如何正确求助?哪些是违规求助? 4375198
关于积分的说明 13624085
捐赠科研通 4229463
什么是DOI,文献DOI怎么找? 2319944
邀请新用户注册赠送积分活动 1318415
关于科研通互助平台的介绍 1268598