Global–Local Discriminative Representation Learning Network for Viewpoint-Aware Vehicle Re-Identification in Intelligent Transportation

判别式 杠杆(统计) 计算机科学 人工智能 特征学习 机器学习 公制(单位) 智能交通系统 鉴定(生物学) 特征(语言学) 特征提取 人工神经网络 匹配(统计) 工程类 语言学 运营管理 土木工程 植物 哲学 统计 数学 生物
作者
Xiaobo Chen,Haoze Yu,Feng Zhao,Yu Hu,Zuoyong Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:9
标识
DOI:10.1109/tim.2023.3295011
摘要

Vehicle re-identification (Re-ID) that aims at matching vehicles across multiple non-overlapping cameras is prevalently recognized as an important application of computer vision in intelligent transportation. One of the major challenges is to extract discriminative features that are resistant to viewpoint variations. To address this problem, this paper proposes a novel vehicle Re-ID model from the perspectives of effective feature fusion and adaptive part attention. Firstly, we put forward a channel attention-based feature fusion (CAFF) module that can learn the significance of features from different layers of the backbone network. In such a way, our model can leverage complementary features for vehicle Re-ID. Then, to address the viewpoint variation problem, we present an adaptive part attention (APA) module that evaluates the significance of local vehicle parts based on the visible areas and the extracted features. By doing so, our model can concentrate more on the vehicle parts with rich discriminative information while paying less attention to the parts with limited distinctive capability. Finally, the whole model is trained by simultaneous classification and metric learning. Experiments on two large-scale vehicle Re-ID datasets are carried out to evaluate the proposed model. The results show that our model achieves competing performance compared with other state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小老贾发布了新的文献求助10
刚刚
25689完成签到,获得积分10
刚刚
刚刚
刚刚
共享精神应助ddddyooo采纳,获得10
1秒前
CodeCraft应助林一又采纳,获得10
1秒前
LXL发布了新的文献求助10
1秒前
呆萌谷兰完成签到,获得积分10
1秒前
小马甲应助TszPok采纳,获得10
1秒前
2秒前
冷静夜蕾完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
wanci应助好多鱼采纳,获得10
3秒前
4秒前
5秒前
5秒前
long0809完成签到,获得积分10
6秒前
果冻橙完成签到,获得积分10
6秒前
6秒前
6秒前
早起完成签到,获得积分10
6秒前
6秒前
蓝天白云发布了新的文献求助10
7秒前
世界小奇发布了新的文献求助10
7秒前
华仔应助XYN1采纳,获得10
7秒前
温柔梦易完成签到,获得积分10
9秒前
echo12发布了新的文献求助10
9秒前
给钱谢谢发布了新的文献求助10
9秒前
果冻橙发布了新的文献求助10
9秒前
贪玩的豪英完成签到,获得积分10
9秒前
9秒前
10秒前
LLL完成签到,获得积分10
10秒前
11秒前
猴哥完成签到,获得积分10
11秒前
小蜗爬爬应助义气山水采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978