Multi-ConDoS: Multimodal Contrastive Domain Sharing Generative Adversarial Networks for Self-Supervised Medical Image Segmentation

计算机科学 人工智能 分割 领域(数学分析) 模式识别(心理学) 翻译(生物学) 图像分割 图像翻译 图像(数学) 生成语法 机器学习 医学影像学 计算机视觉 数学 数学分析 生物化学 化学 信使核糖核酸 基因
作者
Jiaojiao Zhang,Shuo Zhang,Xiaoqian Shen,Thomas Lukasiewicz,Zhenghua Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 76-95 被引量:24
标识
DOI:10.1109/tmi.2023.3290356
摘要

Existing self-supervised medical image segmentation usually encounters the domain shift problem (i.e., the input distribution of pre-training is different from that of fine-tuning) and/or the multimodality problem (i.e., it is based on single-modal data only and cannot utilize the fruitful multimodal information of medical images). To solve these problems, in this work, we propose multimodal contrastive domain sharing (Multi-ConDoS) generative adversarial networks to achieve effective multimodal contrastive self-supervised medical image segmentation. Compared to the existing self-supervised approaches, Multi-ConDoS has the following three advantages: (i) it utilizes multimodal medical images to learn more comprehensive object features via multimodal contrastive learning; (ii) domain translation is achieved by integrating the cyclic learning strategy of CycleGAN and the cross-domain translation loss of Pix2Pix; (iii) novel domain sharing layers are introduced to learn not only domain-specific but also domain-sharing information from the multimodal medical images. Extensive experiments on two publicly multimodal medical image segmentation datasets show that, with only 5% (resp., 10%) of labeled data, Multi-ConDoS not only greatly outperforms the state-of-the-art self-supervised and semi-supervised medical image segmentation baselines with the same ratio of labeled data, but also achieves similar (sometimes even better) performances as fully supervised segmentation methods with 50% (resp., 100%) of labeled data, which thus proves that our work can achieve superior segmentation performances with very low labeling workload. Furthermore, ablation studies prove that the above three improvements are all effective and essential for Multi-ConDoS to achieve this very superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
annoraz完成签到,获得积分10
刚刚
1秒前
cocolu应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得30
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
Neo完成签到,获得积分10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
老张完成签到,获得积分10
4秒前
科研通AI5应助666采纳,获得10
4秒前
zjz1关注了科研通微信公众号
4秒前
Yxian发布了新的文献求助10
4秒前
5秒前
ZJX完成签到,获得积分10
5秒前
专注奇迹完成签到,获得积分20
5秒前
sctaaa发布了新的文献求助10
5秒前
yoyo发布了新的文献求助10
5秒前
6秒前
6秒前
妖精完成签到 ,获得积分10
7秒前
8秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483126
求助须知:如何正确求助?哪些是违规求助? 3072548
关于积分的说明 9127020
捐赠科研通 2764145
什么是DOI,文献DOI怎么找? 1516910
邀请新用户注册赠送积分活动 701852
科研通“疑难数据库(出版商)”最低求助积分说明 700728