Multi-ConDoS: Multimodal Contrastive Domain Sharing Generative Adversarial Networks for Self-Supervised Medical Image Segmentation

计算机科学 人工智能 分割 领域(数学分析) 模式识别(心理学) 翻译(生物学) 图像分割 图像翻译 图像(数学) 生成语法 机器学习 医学影像学 计算机视觉 数学 数学分析 生物化学 化学 信使核糖核酸 基因
作者
Jiaojiao Zhang,Shuo Zhang,Xiaoqian Shen,Thomas Lukasiewicz,Zhenghua Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 76-95 被引量:29
标识
DOI:10.1109/tmi.2023.3290356
摘要

Existing self-supervised medical image segmentation usually encounters the domain shift problem (i.e., the input distribution of pre-training is different from that of fine-tuning) and/or the multimodality problem (i.e., it is based on single-modal data only and cannot utilize the fruitful multimodal information of medical images). To solve these problems, in this work, we propose multimodal contrastive domain sharing (Multi-ConDoS) generative adversarial networks to achieve effective multimodal contrastive self-supervised medical image segmentation. Compared to the existing self-supervised approaches, Multi-ConDoS has the following three advantages: (i) it utilizes multimodal medical images to learn more comprehensive object features via multimodal contrastive learning; (ii) domain translation is achieved by integrating the cyclic learning strategy of CycleGAN and the cross-domain translation loss of Pix2Pix; (iii) novel domain sharing layers are introduced to learn not only domain-specific but also domain-sharing information from the multimodal medical images. Extensive experiments on two publicly multimodal medical image segmentation datasets show that, with only 5% (resp., 10%) of labeled data, Multi-ConDoS not only greatly outperforms the state-of-the-art self-supervised and semi-supervised medical image segmentation baselines with the same ratio of labeled data, but also achieves similar (sometimes even better) performances as fully supervised segmentation methods with 50% (resp., 100%) of labeled data, which thus proves that our work can achieve superior segmentation performances with very low labeling workload. Furthermore, ablation studies prove that the above three improvements are all effective and essential for Multi-ConDoS to achieve this very superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
流星雨发布了新的文献求助10
刚刚
刚刚
刚刚
爆米花应助超帅的天曼采纳,获得10
1秒前
ChenJerry关注了科研通微信公众号
1秒前
1秒前
Ava应助我真没想重生啊采纳,获得10
1秒前
明理囧完成签到 ,获得积分10
2秒前
福宝完成签到,获得积分10
2秒前
SCI发发发发布了新的文献求助10
2秒前
2秒前
3秒前
杨灵培发布了新的文献求助10
4秒前
4秒前
4秒前
爆米花应助安静的山菡采纳,获得10
4秒前
科研通AI6应助美美桑内采纳,获得10
4秒前
5秒前
qq发布了新的文献求助10
5秒前
5秒前
航海家发布了新的文献求助10
5秒前
6秒前
KUN完成签到,获得积分10
6秒前
Grondwet发布了新的文献求助10
7秒前
小菜鸟完成签到,获得积分10
7秒前
7秒前
zhuwei发布了新的文献求助10
8秒前
琉璃岁月完成签到,获得积分10
8秒前
合适的海安完成签到,获得积分20
8秒前
一一发布了新的文献求助10
9秒前
思源应助缓慢的灵枫采纳,获得10
9秒前
北北北发布了新的文献求助10
9秒前
9秒前
9秒前
每天100次完成签到,获得积分10
10秒前
田様应助西瓜瓜采纳,获得10
10秒前
wanci应助Luke采纳,获得10
10秒前
勤劳茗完成签到,获得积分20
10秒前
feifei发布了新的文献求助10
11秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442878
求助须知:如何正确求助?哪些是违规求助? 4552922
关于积分的说明 14239742
捐赠科研通 4474315
什么是DOI,文献DOI怎么找? 2451988
邀请新用户注册赠送积分活动 1442905
关于科研通互助平台的介绍 1418632