Multi-ConDoS: Multimodal Contrastive Domain Sharing Generative Adversarial Networks for Self-Supervised Medical Image Segmentation

计算机科学 人工智能 分割 领域(数学分析) 模式识别(心理学) 翻译(生物学) 图像分割 图像翻译 图像(数学) 生成语法 机器学习 医学影像学 计算机视觉 数学 数学分析 生物化学 化学 信使核糖核酸 基因
作者
Jiaojiao Zhang,Shuo Zhang,Xiaoqian Shen,Thomas Lukasiewicz,Zhenghua Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 76-95 被引量:29
标识
DOI:10.1109/tmi.2023.3290356
摘要

Existing self-supervised medical image segmentation usually encounters the domain shift problem (i.e., the input distribution of pre-training is different from that of fine-tuning) and/or the multimodality problem (i.e., it is based on single-modal data only and cannot utilize the fruitful multimodal information of medical images). To solve these problems, in this work, we propose multimodal contrastive domain sharing (Multi-ConDoS) generative adversarial networks to achieve effective multimodal contrastive self-supervised medical image segmentation. Compared to the existing self-supervised approaches, Multi-ConDoS has the following three advantages: (i) it utilizes multimodal medical images to learn more comprehensive object features via multimodal contrastive learning; (ii) domain translation is achieved by integrating the cyclic learning strategy of CycleGAN and the cross-domain translation loss of Pix2Pix; (iii) novel domain sharing layers are introduced to learn not only domain-specific but also domain-sharing information from the multimodal medical images. Extensive experiments on two publicly multimodal medical image segmentation datasets show that, with only 5% (resp., 10%) of labeled data, Multi-ConDoS not only greatly outperforms the state-of-the-art self-supervised and semi-supervised medical image segmentation baselines with the same ratio of labeled data, but also achieves similar (sometimes even better) performances as fully supervised segmentation methods with 50% (resp., 100%) of labeled data, which thus proves that our work can achieve superior segmentation performances with very low labeling workload. Furthermore, ablation studies prove that the above three improvements are all effective and essential for Multi-ConDoS to achieve this very superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助PhD_Essence采纳,获得10
刚刚
kxm发布了新的文献求助10
刚刚
momo完成签到,获得积分10
刚刚
略微妙蛙发布了新的文献求助10
1秒前
1秒前
科研通AI6应助qian03采纳,获得10
1秒前
1秒前
hhhhh发布了新的文献求助10
2秒前
2秒前
奚康发布了新的文献求助10
3秒前
一个西藏发布了新的文献求助10
4秒前
HJJHJH发布了新的文献求助30
4秒前
安静的冰蓝完成签到 ,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
ljy完成签到,获得积分10
5秒前
科研通AI6应助霸气靖雁采纳,获得10
6秒前
库洛洛发布了新的文献求助10
6秒前
科研通AI6应助kxm采纳,获得10
7秒前
Lyuxxxian给Lyuxxxian的求助进行了留言
7秒前
我是老大应助0s7采纳,获得10
7秒前
WHITE完成签到,获得积分10
7秒前
Isabella完成签到,获得积分10
9秒前
852应助wangli采纳,获得10
9秒前
greenqq发布了新的文献求助30
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
彭于晏应助WHITE采纳,获得10
11秒前
JamesPei应助陈泽宇采纳,获得10
12秒前
12秒前
luermei完成签到,获得积分10
12秒前
大模型应助友好的灯泡采纳,获得10
13秒前
14秒前
14秒前
深情安青应助自然的南露采纳,获得10
15秒前
FashionBoy应助kxm采纳,获得10
15秒前
小马完成签到,获得积分10
16秒前
右二森发布了新的文献求助10
16秒前
Planta完成签到,获得积分10
17秒前
小星完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660573
求助须知:如何正确求助?哪些是违规求助? 4834676
关于积分的说明 15091117
捐赠科研通 4819141
什么是DOI,文献DOI怎么找? 2579102
邀请新用户注册赠送积分活动 1533630
关于科研通互助平台的介绍 1492396