Deep learning applications in single-cell genomics and transcriptomics data analysis

计算机科学 预处理器 基因组学 人工智能 计算生物学 组学 系统生物学 数据集成 机器学习 数据科学 数据挖掘 生物信息学 生物 基因组 生物化学 基因
作者
Nafiseh Erfanian,A. Ali Heydari,Adib Miraki Feriz,Pablo Iañez,Afshin Derakhshani,Mohammad GhasemiGol,Mohsen Farahpour,Seyyed Mohammad Razavi,Saeed Nasseri,Hossein Safarpour,Amirhossein Sahebkar
出处
期刊:Biomedicine & Pharmacotherapy [Elsevier]
卷期号:165: 115077-115077 被引量:18
标识
DOI:10.1016/j.biopha.2023.115077
摘要

Traditional bulk sequencing methods are limited to measuring the average signal in a group of cells, potentially masking heterogeneity, and rare populations. The single-cell resolution, however, enhances our understanding of complex biological systems and diseases, such as cancer, the immune system, and chronic diseases. However, the single-cell technologies generate massive amounts of data that are often high-dimensional, sparse, and complex, thus making analysis with traditional computational approaches difficult and unfeasible. To tackle these challenges, many are turning to deep learning (DL) methods as potential alternatives to the conventional machine learning (ML) algorithms for single-cell studies. DL is a branch of ML capable of extracting high-level features from raw inputs in multiple stages. Compared to traditional ML, DL models have provided significant improvements across many domains and applications. In this work, we examine DL applications in genomics, transcriptomics, spatial transcriptomics, and multi-omics integration, and address whether DL techniques will prove to be advantageous or if the single-cell omics domain poses unique challenges. Through a systematic literature review, we have found that DL has not yet revolutionized the most pressing challenges of the single-cell omics field. However, using DL models for single-cell omics has shown promising results (in many cases outperforming the previous state-of-the-art models) in data preprocessing and downstream analysis. Although developments of DL algorithms for single-cell omics have generally been gradual, recent advances reveal that DL can offer valuable resources in fast-tracking and advancing research in single-cell.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WW发布了新的文献求助10
1秒前
1秒前
sdnihbhew发布了新的文献求助10
1秒前
2秒前
Owen应助和谐晓啸采纳,获得10
2秒前
Hh发布了新的文献求助10
6秒前
林夕发布了新的文献求助10
7秒前
7秒前
jack完成签到,获得积分10
7秒前
充电宝应助xvzhenyuan采纳,获得10
7秒前
7秒前
彩色的白秋完成签到,获得积分10
7秒前
NexusExplorer应助yangbo666采纳,获得10
8秒前
依克完成签到,获得积分10
9秒前
飞天乌猪完成签到,获得积分10
10秒前
hamzhang0426发布了新的文献求助10
11秒前
12秒前
紫藤蛇发布了新的文献求助10
12秒前
14秒前
科研通AI2S应助林夕采纳,获得10
14秒前
英姑应助林夕采纳,获得10
14秒前
15秒前
和谐晓啸完成签到,获得积分10
15秒前
16秒前
大笨冰完成签到 ,获得积分10
17秒前
共享精神应助vc采纳,获得10
19秒前
Founder发布了新的文献求助30
19秒前
19秒前
19秒前
FashionBoy应助若琳采纳,获得10
20秒前
Tangwz发布了新的文献求助10
20秒前
zhou完成签到 ,获得积分10
20秒前
bamboo发布了新的文献求助10
20秒前
甜甜玫瑰应助vvvvvvv采纳,获得10
20秒前
21秒前
紫藤蛇完成签到,获得积分10
21秒前
21秒前
21秒前
林夕完成签到,获得积分20
21秒前
星辰大海应助风中的丝袜采纳,获得10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154423
求助须知:如何正确求助?哪些是违规求助? 2805324
关于积分的说明 7864266
捐赠科研通 2463518
什么是DOI,文献DOI怎么找? 1311381
科研通“疑难数据库(出版商)”最低求助积分说明 629574
版权声明 601821