An intelligent optimization method of exercisers' visual comfort assessment in gymnasium

亮度 人工智能 计算机科学 视觉感受 可视化 感知 计算机视觉 模拟 心理学 神经科学
作者
Ligang Shi,Jinghan Qiu,Ruinan Zhang,Yuqing Li,Zhaojing Yang,Xinzhu Qi,Lulu Tao,Siying Li,Weiming Liu
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:76: 107135-107135
标识
DOI:10.1016/j.jobe.2023.107135
摘要

Exercisers' visual comfort is an essential factor in successful gymnasium design. Existing research has identified viable indicators of visual comfort and the explained the interaction between humans and the light environment. However, it remains difficult to accurately quantify the impact of the daylight environment on human perception. Given the particularity of exercisers' behavior and activities in gymnasiums, the current general assessment model for exercisers' visual perception is lacking. Taking a university gymnasium in Harbin as a case, this study aimed to establish a computational method for assessing visual comfort from the human-centric perspective via mutual authentication between questionnaire and physiological indices and luminance. An analysis of the questionnaire responses revealed that the synthetical visual evaluation (SVE) was an appropriate visual evaluation index. Machine learning was applied to quantify the correlation between various luminance levels and human perception to assess exercisers' level of visual comfort. Multilayer Perceptron models with the best-fit optimization were selected by artificial neural networks (ANNs) to determine the most optimized visual comfort assessment model. Based on the ANNs, the correlation coefficient between luminance, SVE, and physiological indicator ranged from 85% to 90%. According to the genetic algorithm, the average luminance of the entire field of view (Lfov) was 55–135 cd/m2, the average luminance of the target area (Lt) was 82–375 cd/m2, and the average luminance of the window area (Lw) was 960–1950 cd/m2, for a comfortable visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sdfwsdfsd发布了新的文献求助30
刚刚
FashionBoy应助薛定谔的猫采纳,获得10
1秒前
Zzzzan发布了新的文献求助10
2秒前
粗心的无颜应助jinxli采纳,获得10
3秒前
氨基丁酸完成签到,获得积分20
4秒前
yy应助keo采纳,获得20
4秒前
Orange应助964230130采纳,获得10
5秒前
7秒前
777完成签到 ,获得积分10
8秒前
SYLH应助殷勤的雨灵采纳,获得10
9秒前
9秒前
9秒前
10秒前
ww发布了新的文献求助10
11秒前
和谐续完成签到 ,获得积分10
12秒前
炙热晓露完成签到,获得积分10
13秒前
标致的耳机完成签到,获得积分10
14秒前
殷勤的雨灵完成签到,获得积分10
16秒前
16秒前
17秒前
小二郎应助迷路的手机采纳,获得10
17秒前
奋进的熊完成签到,获得积分10
19秒前
nekoleaf完成签到,获得积分10
19秒前
科研通AI5应助Zzzzan采纳,获得30
19秒前
科研通AI5应助阳光向秋采纳,获得30
20秒前
20秒前
阔达磬完成签到,获得积分10
21秒前
薛定谔的猫完成签到,获得积分10
23秒前
赘婿应助你听风在吹采纳,获得10
23秒前
辛勤易烟完成签到,获得积分10
25秒前
27秒前
nekoleaf发布了新的文献求助10
27秒前
我是老大应助安静的海角采纳,获得10
28秒前
搁浅完成签到,获得积分10
30秒前
美人鱼听不了超声波完成签到 ,获得积分10
31秒前
31秒前
31秒前
Akim应助朴素的元风采纳,获得10
32秒前
33秒前
hujushan完成签到,获得积分10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782