清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

From Synthetic Data to Real Palm Vein Identification: a Fine-Tuning Approach

计算机科学 生物识别 学习迁移 人工智能 背景(考古学) 机器学习 合成数据 深度学习 过程(计算) 特征提取 特征(语言学) 模式识别(心理学) 数据挖掘 古生物学 语言学 哲学 生物 操作系统
作者
Ruber Hernández-García,Edwin H. Salazar-Jurado,Ricardo J. Barrientos,Francisco M. Castro,Julián Ramos-Cózar,Nicolás Guil
标识
DOI:10.1109/icprs58416.2023.10179042
摘要

Palm vein recognition has relevant advantages in comparison with most traditional biometrics, such as high security and recognition performance. In recent years, CNN-based models for vascular biometrics have improved the state-of-the-art, but they have the disadvantage of requiring a larger number of samples for training. In this context, the generation of synthetic databases is very effective for evaluating the performance of biometric systems. The present study proposes a new perspective of a transfer learning approach for palm vein recognition, evaluating the use of Synthetic-sPVDB and NS-PVDB synthetic databases for pre-training deep learning models and validating their performance on real databases. The proposed methodology comprises two different branches as inputs. Firstly, a synthetic database is used to train a CNN model, and in the second branch, a real database is used to finetune and evaluate the performance of the resulting pre-trained model. For the feature learning process, we implemented two end-to-end CNN architectures based on AlexNet and Resnet32. The experimental results on the most representative public datasets have shown the usefulness of using palm vein synthetic images for transfer learning, outperforming the state-of-the-art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
33秒前
xun发布了新的文献求助10
36秒前
量子星尘发布了新的文献求助10
1分钟前
卓垚完成签到,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
蓝天阳光完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
稻子完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
CherylZhao完成签到,获得积分10
4分钟前
xun完成签到,获得积分10
4分钟前
4分钟前
4分钟前
zy发布了新的文献求助10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
冷傲半邪完成签到,获得积分10
6分钟前
Lny发布了新的文献求助10
6分钟前
6分钟前
wuke完成签到,获得积分20
6分钟前
我是笨蛋完成签到 ,获得积分10
6分钟前
7分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128743
捐赠科研通 3238333
什么是DOI,文献DOI怎么找? 1789703
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069