计算机科学
生物识别
学习迁移
人工智能
背景(考古学)
机器学习
合成数据
深度学习
过程(计算)
特征提取
特征(语言学)
模式识别(心理学)
数据挖掘
古生物学
语言学
哲学
生物
操作系统
作者
Ruber Hernández-García,Edwin H. Salazar-Jurado,Ricardo J. Barrientos,Francisco M. Castro,Julián Ramos-Cózar,Nicolás Guil
标识
DOI:10.1109/icprs58416.2023.10179042
摘要
Palm vein recognition has relevant advantages in comparison with most traditional biometrics, such as high security and recognition performance. In recent years, CNN-based models for vascular biometrics have improved the state-of-the-art, but they have the disadvantage of requiring a larger number of samples for training. In this context, the generation of synthetic databases is very effective for evaluating the performance of biometric systems. The present study proposes a new perspective of a transfer learning approach for palm vein recognition, evaluating the use of Synthetic-sPVDB and NS-PVDB synthetic databases for pre-training deep learning models and validating their performance on real databases. The proposed methodology comprises two different branches as inputs. Firstly, a synthetic database is used to train a CNN model, and in the second branch, a real database is used to finetune and evaluate the performance of the resulting pre-trained model. For the feature learning process, we implemented two end-to-end CNN architectures based on AlexNet and Resnet32. The experimental results on the most representative public datasets have shown the usefulness of using palm vein synthetic images for transfer learning, outperforming the state-of-the-art results.
科研通智能强力驱动
Strongly Powered by AbleSci AI